Skip to main content
Erschienen in: Quantum Information Processing 2/2020

01.02.2020

Optimal uniform continuity bound for conditional entropy of classical–quantum states

verfasst von: Mark M. Wilde

Erschienen in: Quantum Information Processing | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this short note, I show how a recent result of Alhejji and Smith (A tight uniform continuity bound for equivocation, 2019. arXiv:​1909.​00787v1) regarding an optimal uniform continuity bound for classical conditional entropy leads to an optimal uniform continuity bound for quantum conditional entropy of classical–quantum states. The bound is optimal in the sense that there always exists a pair of classical–quantum states saturating the bound, and so, no further improvements are possible. An immediate application is a uniform continuity bound for the entanglement of formation that improves upon the one previously given by Winter (Commun Math Phys 347(1):291–313, 2016. arXiv:​1507.​07775). Two intriguing open questions are raised regarding other possible uniform continuity bounds for conditional entropy: one about quantum–classical states and another about fully quantum bipartite states.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Zhang, Zhengmin: Estimating mutual information via Kolmogorov distance. IEEE Trans. Inf. Theory 53(9), 3280–3282 (2007)MathSciNetCrossRef Zhang, Zhengmin: Estimating mutual information via Kolmogorov distance. IEEE Trans. Inf. Theory 53(9), 3280–3282 (2007)MathSciNetCrossRef
4.
7.
Zurück zum Zitat Leditzky, F., Kaur, E., Datta, N., Wilde, M.M.: Approaches for approximate additivity of the Holevo information of quantum channels. Phys. Rev. A 97(1), 012332 (2018). arXiv:1709.01111 ADSCrossRef Leditzky, F., Kaur, E., Datta, N., Wilde, M.M.: Approaches for approximate additivity of the Holevo information of quantum channels. Phys. Rev. A 97(1), 012332 (2018). arXiv:​1709.​01111 ADSCrossRef
8.
Zurück zum Zitat Kaur, E., Wilde, M.M.: Amortized entanglement of a quantum channel and approximately teleportation-simulable channels. J. Phys. A Math. Theor. (2017). arXiv:1707.07721 Kaur, E., Wilde, M.M.: Amortized entanglement of a quantum channel and approximately teleportation-simulable channels. J. Phys. A Math. Theor. (2017). arXiv:​1707.​07721
9.
Zurück zum Zitat Sharma, K., Wilde, M.M., Adhikari, S., Takeoka, M.: Bounding the energy-constrained quantum and private capacities of bosonic thermal channels. New J. Phys. 20, 063025 (2018). arXiv:1708.07257 ADSCrossRef Sharma, K., Wilde, M.M., Adhikari, S., Takeoka, M.: Bounding the energy-constrained quantum and private capacities of bosonic thermal channels. New J. Phys. 20, 063025 (2018). arXiv:​1708.​07257 ADSCrossRef
10.
Zurück zum Zitat Khatri, S., Sharma, K., Wilde, M.M.: Information-theoretic aspects of the generalized amplitude damping channel (2019). arXiv:1903.07747 Khatri, S., Sharma, K., Wilde, M.M.: Information-theoretic aspects of the generalized amplitude damping channel (2019). arXiv:​1903.​07747
11.
Zurück zum Zitat Kaur, E., Guha, S., Wilde, M.M.: Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution (2019). arXiv:1901.10099 Kaur, E., Guha, S., Wilde, M.M.: Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution (2019). arXiv:​1901.​10099
12.
14.
15.
Zurück zum Zitat Shirokov, Maksim E.: Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity, and for capacities of quantum channels. J. Math. Phys. 58(10), 102202 (2017)ADSMathSciNetCrossRef Shirokov, Maksim E.: Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity, and for capacities of quantum channels. J. Math. Phys. 58(10), 102202 (2017)ADSMathSciNetCrossRef
17.
18.
Zurück zum Zitat Shirokov, M.E.: Advanced Alicki–Fannes–Winter method for energy-constrained quantum systems and its use (2019). arXiv:1907.02458 Shirokov, M.E.: Advanced Alicki–Fannes–Winter method for energy-constrained quantum systems and its use (2019). arXiv:​1907.​02458
19.
Zurück zum Zitat Petz, Denes: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)MATH Petz, Denes: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)MATH
Metadaten
Titel
Optimal uniform continuity bound for conditional entropy of classical–quantum states
verfasst von
Mark M. Wilde
Publikationsdatum
01.02.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 2/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2563-4

Weitere Artikel der Ausgabe 2/2020

Quantum Information Processing 2/2020 Zur Ausgabe

Neuer Inhalt