Skip to main content
Erschienen in: Journal of Scientific Computing 2-3/2017

26.04.2017

Optimally Convergent HDG Method for Third-Order Korteweg–de Vries Type Equations

verfasst von: Bo Dong

Erschienen in: Journal of Scientific Computing | Ausgabe 2-3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop and analyze a new hybridizable discontinuous Galerkin method for solving third-order Korteweg–de Vries type equations. The approximate solutions are defined by a discrete version of a characterization of the exact solution in terms of the solutions to local problems on each element which are patched together through transmission conditions on element interfaces. We prove that the semi-discrete scheme is stable with proper choices of stabilization function in the numerical traces. For the linearized equation, we carry out error analysis and show that the approximations to the exact solution and its derivatives have optimal convergence rates. In numerical experiments, we use an implicit scheme for time discretization and the Newton–Raphson method for solving systems of nonlinear equations, and observe optimal convergence rates for both the linear and the nonlinear third-order equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Biswas, H.A., Rahman, A., Das, T.: An investigation on fiber optical solution in mathematical physics and its application to communication engineering. IJRRAS 6(3), 268–276 (2011) Biswas, H.A., Rahman, A., Das, T.: An investigation on fiber optical solution in mathematical physics and its application to communication engineering. IJRRAS 6(3), 268–276 (2011)
2.
Zurück zum Zitat Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg–de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)CrossRefMATHMathSciNet Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg–de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)CrossRefMATHMathSciNet
3.
Zurück zum Zitat Bona, J.L., Chen, H., Sun, S.-M., Zhang, B.-Y.: Comparison of quarter-plane and two-point boundary value problems: the KDV-equation. Discrete Contin. Dyn. Syst. Ser. B 7(3), 465–495 (2007)CrossRefMATHMathSciNet Bona, J.L., Chen, H., Sun, S.-M., Zhang, B.-Y.: Comparison of quarter-plane and two-point boundary value problems: the KDV-equation. Discrete Contin. Dyn. Syst. Ser. B 7(3), 465–495 (2007)CrossRefMATHMathSciNet
4.
Zurück zum Zitat Bona, J.L., Sun, S.-M., Zhang, B.-Y.: A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28(7–8), 1391–1436 (2003)CrossRefMATHMathSciNet Bona, J.L., Sun, S.-M., Zhang, B.-Y.: A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28(7–8), 1391–1436 (2003)CrossRefMATHMathSciNet
5.
Zurück zum Zitat Bona, J.L., Sun, S.-M., Zhang, B.-Y.: A non-homogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain II. J. Differ. Equ. 247, 2558–2596 (2009)CrossRefMATHMathSciNet Bona, J.L., Sun, S.-M., Zhang, B.-Y.: A non-homogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain II. J. Differ. Equ. 247, 2558–2596 (2009)CrossRefMATHMathSciNet
6.
Zurück zum Zitat Braginskii, S.I.: Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965) Braginskii, S.I.: Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)
7.
Zurück zum Zitat Buckingham, M.: Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. J. Acoust. Soc. Am. 102(5), 2579–2596 (1997)CrossRef Buckingham, M.: Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. J. Acoust. Soc. Am. 102(5), 2579–2596 (1997)CrossRef
8.
Zurück zum Zitat Chen, Y., Cockburn, B., Dong, B.: Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85, 2715–2742 (2016)CrossRefMATHMathSciNet Chen, Y., Cockburn, B., Dong, B.: Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85, 2715–2742 (2016)CrossRefMATHMathSciNet
9.
Zurück zum Zitat Chen, Y., Cockburn, B., Dong, B.: A new discontinuous Galerkin method, conserving the discrete \(H^2\)-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36(4), 1570–1598 (2016)CrossRefMathSciNet Chen, Y., Cockburn, B., Dong, B.: A new discontinuous Galerkin method, conserving the discrete \(H^2\)-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36(4), 1570–1598 (2016)CrossRefMathSciNet
10.
Zurück zum Zitat Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 262, 699–730 (2008)MATHMathSciNet Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 262, 699–730 (2008)MATHMathSciNet
11.
Zurück zum Zitat Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)CrossRefMATHMathSciNet Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)CrossRefMATHMathSciNet
12.
Zurück zum Zitat Cockburn, B., Fu, Z., Hungria, A., Ji, L., Sánchez, M., Sayas, F.-J.: Stormer–Numerov methods for the acoustic wave equation (submitted) Cockburn, B., Fu, Z., Hungria, A., Ji, L., Sánchez, M., Sayas, F.-J.: Stormer–Numerov methods for the acoustic wave equation (submitted)
13.
Zurück zum Zitat Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)CrossRefMATHMathSciNet Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)CrossRefMATHMathSciNet
14.
Zurück zum Zitat Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)CrossRefMATHMathSciNet Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)CrossRefMATHMathSciNet
15.
Zurück zum Zitat Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)CrossRefMATHMathSciNet Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)CrossRefMATHMathSciNet
16.
Zurück zum Zitat Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)CrossRefMATHMathSciNet Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)CrossRefMATHMathSciNet
17.
Zurück zum Zitat Goubet, O., Shen, J.: On the dual Petrov–Galerkin formulation of the KdV equation on a finite interval. Adv. Differ. Equ. 12(2), 221–239 (2007)MATHMathSciNet Goubet, O., Shen, J.: On the dual Petrov–Galerkin formulation of the KdV equation on a finite interval. Adv. Differ. Equ. 12(2), 221–239 (2007)MATHMathSciNet
18.
Zurück zum Zitat Holmer, J.: The initial-boundary value problem for the Korteweg–de Vries equation. Commun. Partial Differ. Equ. 31, 115–1190 (2006)CrossRefMATHMathSciNet Holmer, J.: The initial-boundary value problem for the Korteweg–de Vries equation. Commun. Partial Differ. Equ. 31, 115–1190 (2006)CrossRefMATHMathSciNet
19.
Zurück zum Zitat Horsley, S.A.R.: The KdV hierarchy in optics. J. Opt. 18, 085104 (2016)CrossRef Horsley, S.A.R.: The KdV hierarchy in optics. J. Opt. 18, 085104 (2016)CrossRef
20.
Zurück zum Zitat Hufford, C., Xing, Y.: Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg–de Vries equation. J. Comput. Appl. Math. 255, 441–455 (2014)CrossRefMATHMathSciNet Hufford, C., Xing, Y.: Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg–de Vries equation. J. Comput. Appl. Math. 255, 441–455 (2014)CrossRefMATHMathSciNet
21.
Zurück zum Zitat Kamchatnov, A.M., Shchesnovich, V.S.: Dynamics of Bose–Einstein condensates in cigar-shaped traps. Phys. Rev. A 70(02), 023604 (2004)CrossRef Kamchatnov, A.M., Shchesnovich, V.S.: Dynamics of Bose–Einstein condensates in cigar-shaped traps. Phys. Rev. A 70(02), 023604 (2004)CrossRef
22.
Zurück zum Zitat Karakashian, O., Xing, Y.: A posteriori error estimates for conservative local discontinuous Galerkin methods for the generalized Korteweg–de Vries equation. Commun. Comput. Phys. 20, 250–278 (2016)CrossRefMATHMathSciNet Karakashian, O., Xing, Y.: A posteriori error estimates for conservative local discontinuous Galerkin methods for the generalized Korteweg–de Vries equation. Commun. Comput. Phys. 20, 250–278 (2016)CrossRefMATHMathSciNet
23.
Zurück zum Zitat Liu, H., Yan, J.: A local discontinuous Galerkin method for the Korteweg–de Vries equation with boundary effect. J. Comput. Phys. 215, 197–218 (2006)CrossRefMATHMathSciNet Liu, H., Yan, J.: A local discontinuous Galerkin method for the Korteweg–de Vries equation with boundary effect. J. Comput. Phys. 215, 197–218 (2006)CrossRefMATHMathSciNet
24.
Zurück zum Zitat Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228, 8841–8855 (2009)CrossRefMATHMathSciNet Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228, 8841–8855 (2009)CrossRefMATHMathSciNet
25.
Zurück zum Zitat Panda, N., Dawson, C., Zhang, Y., Kennedy, A.B., Westerink, J.J., Donahue, A.S.: Discontinuous Galerkin methods for solving Boussinesq–Green–Naghdi equations in resolving non-linear and dispersive surface water waves. J. Comput. Phys. 273, 572–588 (2014)CrossRefMATHMathSciNet Panda, N., Dawson, C., Zhang, Y., Kennedy, A.B., Westerink, J.J., Donahue, A.S.: Discontinuous Galerkin methods for solving Boussinesq–Green–Naghdi equations in resolving non-linear and dispersive surface water waves. J. Comput. Phys. 273, 572–588 (2014)CrossRefMATHMathSciNet
26.
27.
Zurück zum Zitat Samii, A., Panda, N., Michoski, C., Dawson, C.: A hybridized discontinuous Galerkin method for the nonlinear Korteweg–de Vries equation. J. Sci. Comput. 68, 191–212 (2016)CrossRefMATHMathSciNet Samii, A., Panda, N., Michoski, C., Dawson, C.: A hybridized discontinuous Galerkin method for the nonlinear Korteweg–de Vries equation. J. Sci. Comput. 68, 191–212 (2016)CrossRefMATHMathSciNet
28.
Zurück zum Zitat Schamel, H.: A modified Korteweg–de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9(3), 377–387 (1973)CrossRefMathSciNet Schamel, H.: A modified Korteweg–de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9(3), 377–387 (1973)CrossRefMathSciNet
29.
Zurück zum Zitat Shukla, P.K., Eliasson, B.: Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83(3), 885–906 (2011)CrossRef Shukla, P.K., Eliasson, B.: Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83(3), 885–906 (2011)CrossRef
30.
Zurück zum Zitat Skogestad, J.O., Kalisch, H.: A boundary value problem for the KdV equation: comparison of finite-difference and Chebyshev methods. Math. Comput. Simul. 80, 151–163 (2009)CrossRefMATHMathSciNet Skogestad, J.O., Kalisch, H.: A boundary value problem for the KdV equation: comparison of finite-difference and Chebyshev methods. Math. Comput. Simul. 80, 151–163 (2009)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Tagare, S.G.: Effect of ion temperature on propagation of ion-acoustic solitary waves of small amplitudes in collisionless plasma. Plasma Phys. 15(12), 1247 (1973)CrossRef Tagare, S.G.: Effect of ion temperature on propagation of ion-acoustic solitary waves of small amplitudes in collisionless plasma. Plasma Phys. 15(12), 1247 (1973)CrossRef
32.
Zurück zum Zitat Tassi, E., Morrison, P.J., Waelbroeck, F.L., Grasso, D.: Hamiltonian formulation and analysis of a collisionless fluid reconnection model. Plasma Phys. Control. Fusion 50(8), 1–29 (2008)CrossRef Tassi, E., Morrison, P.J., Waelbroeck, F.L., Grasso, D.: Hamiltonian formulation and analysis of a collisionless fluid reconnection model. Plasma Phys. Control. Fusion 50(8), 1–29 (2008)CrossRef
33.
Zurück zum Zitat Tran, M.Q.: Ion acoustic solitons in a plasma—a review of their experimental properties and related theories. Phys. Scr. 20, 317–327 (1979)CrossRef Tran, M.Q.: Ion acoustic solitons in a plasma—a review of their experimental properties and related theories. Phys. Scr. 20, 317–327 (1979)CrossRef
34.
Zurück zum Zitat Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)CrossRefMATHMathSciNet Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)CrossRefMATHMathSciNet
35.
Zurück zum Zitat Xu, Y., Shu, C.W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)CrossRefMATHMathSciNet Xu, Y., Shu, C.W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)CrossRefMATHMathSciNet
36.
37.
Zurück zum Zitat Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefMATH Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefMATH
Metadaten
Titel
Optimally Convergent HDG Method for Third-Order Korteweg–de Vries Type Equations
verfasst von
Bo Dong
Publikationsdatum
26.04.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2-3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0437-4

Weitere Artikel der Ausgabe 2-3/2017

Journal of Scientific Computing 2-3/2017 Zur Ausgabe