Skip to main content

2025 | OriginalPaper | Buchkapitel

Optimisation of Surface Roughness in 3D Printing Using the Bees Algorithm

verfasst von : Shafie Kamaruddin, Arman Hilmi Ridzuan, Nor Aiman Sukindar

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) is renowned for its capability to produce parts that are low-cost and have less manufacturing time. One of the main challenges in this additive manufacturing technology is selecting proper input process parameters to achieve good quality of the 3D printed model. The focus of this study is to determine the optimum input parameter of the 3D printer using the Bees Algorithm (BA). This study uses the Bees Algorithm to predict the best combination parameters to optimise the surface roughness of parts printed by a fused deposition modelling (FDM) machine. The predicted results are compared with the experimental 3D model sample and previous findings of other optimisation methods. Comparative analysis between predicted and actual surface roughness measurements showed good agreement with differences of less than 2%, indicating a significant prediction method. The result also shows that the Bees Algorithm found a better combination of parameters compared to other algorithms. This research provides another alternative optimisation approach for industries that utilise 3D printing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boschetto A, Giordano V, Veniali F (2013) Surface roughness prediction in fused deposition modelling by neural networks. Int J Adv Manuf Technol 67:2727–2742CrossRef Boschetto A, Giordano V, Veniali F (2013) Surface roughness prediction in fused deposition modelling by neural networks. Int J Adv Manuf Technol 67:2727–2742CrossRef
2.
Zurück zum Zitat Wong KV, Hernandez A (2012) A review of additive manufacturing. Int Sch Res Not 2012:10. Article ID 208760 Wong KV, Hernandez A (2012) A review of additive manufacturing. Int Sch Res Not 2012:10. Article ID 208760
3.
Zurück zum Zitat Mankar S, Kale C, Kanchan J (2019) Technology. 3D printing technology-a computer aided design-a review. Res J Sci Tech 11(3):217–224 Mankar S, Kale C, Kanchan J (2019) Technology. 3D printing technology-a computer aided design-a review. Res J Sci Tech 11(3):217–224
4.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The Bees algorithm. Manufacturing Engineering Centre, Cardiff University, UK, Technical Note Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The Bees algorithm. Manufacturing Engineering Centre, Cardiff University, UK, Technical Note
5.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The Bees Algorithm—a novel tool for complex optimisation problems. Intell Prod Mach Syst 454–459 Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The Bees Algorithm—a novel tool for complex optimisation problems. Intell Prod Mach Syst 454–459
6.
Zurück zum Zitat Pham DT, Castellani M, Le Thi H (2014) Nature-inspired intelligent optimisation using the Bees algorithm. Trans Comput Intell XIII 38–69 Pham DT, Castellani M, Le Thi H (2014) Nature-inspired intelligent optimisation using the Bees algorithm. Trans Comput Intell XIII 38–69
7.
Zurück zum Zitat Pham DT, Castellani M (2015) A comparative study of the Bees algorithm as a tool for function optimisation. Cogent Eng 2:1091540CrossRef Pham DT, Castellani M (2015) A comparative study of the Bees algorithm as a tool for function optimisation. Cogent Eng 2:1091540CrossRef
8.
Zurück zum Zitat Pham DT, Castellani M (2019) The Bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng C J Mech Eng Sci 223(12):2919–2938CrossRef Pham DT, Castellani M (2019) The Bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng C J Mech Eng Sci 223(12):2919–2938CrossRef
9.
Zurück zum Zitat Saad MS, Nor AM, Baharudin ME et al (2019) Optimization of surface roughness in FDM 3D printer using response surface methodology, particle swarm optimization, and symbiotic organism search algorithms. Int J Adv Manuf Technol 105:5121–5137CrossRef Saad MS, Nor AM, Baharudin ME et al (2019) Optimization of surface roughness in FDM 3D printer using response surface methodology, particle swarm optimization, and symbiotic organism search algorithms. Int J Adv Manuf Technol 105:5121–5137CrossRef
10.
Zurück zum Zitat Rao RV, Rai DP (2015) Optimization of fused deposition modeling process using teaching-learning-based optimization algorithm. Eng Sci Technol Int J 19(1):587–603 Rao RV, Rai DP (2015) Optimization of fused deposition modeling process using teaching-learning-based optimization algorithm. Eng Sci Technol Int J 19(1):587–603
11.
Zurück zum Zitat Deshwal S, Kumar A, Chhabra D (2020) Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP J Manuf Sci Technol 31:189–199CrossRef Deshwal S, Kumar A, Chhabra D (2020) Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP J Manuf Sci Technol 31:189–199CrossRef
12.
Zurück zum Zitat Raju M, Gupta MK, Bhanot N et al (2019) A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters. J Intell Manuf 30:2743–2758CrossRef Raju M, Gupta MK, Bhanot N et al (2019) A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters. J Intell Manuf 30:2743–2758CrossRef
13.
Zurück zum Zitat Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73:509–519CrossRef Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73:509–519CrossRef
14.
Zurück zum Zitat Kamaruddin S, Azmi N, Sukindar NA (2022) Assembly sequence optimization using the Bees algorithm. In: Enabling Industry 4.0 through advances in mechatronics. Lecture notes in electrical engineering, vol 900. Springer, Singapore Kamaruddin S, Azmi N, Sukindar NA (2022) Assembly sequence optimization using the Bees algorithm. In: Enabling Industry 4.0 through advances in mechatronics. Lecture notes in electrical engineering, vol 900. Springer, Singapore
15.
Zurück zum Zitat Kamaruddin S, Rosdi MN, Aiman Sukindar N (2021) Optimization of drilling path using the Bees algorithm. Manuf Technol 21(6): 788–792 Kamaruddin S, Rosdi MN, Aiman Sukindar N (2021) Optimization of drilling path using the Bees algorithm. Manuf Technol 21(6): 788–792
16.
Zurück zum Zitat Pérez M, Medina-Sánchez G, García-Collado A, Gupta M, Carou D (2018) Surface quality enhancement of fused deposition modelling (FDM) printed samples based on the selection of critical printing parameters. Materials 11(8):1382 Pérez M, Medina-Sánchez G, García-Collado A, Gupta M, Carou D (2018) Surface quality enhancement of fused deposition modelling (FDM) printed samples based on the selection of critical printing parameters. Materials 11(8):1382
Metadaten
Titel
Optimisation of Surface Roughness in 3D Printing Using the Bees Algorithm
verfasst von
Shafie Kamaruddin
Arman Hilmi Ridzuan
Nor Aiman Sukindar
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.