Skip to main content
Erschienen in:

01.03.2024 | Original Paper

Optimization algorithm analysis of EV waste battery recycling logistics based on neural network

verfasst von: Zhang Yongxiang, Lai Xinyu, Liu Chunhong, Qin Bin

Erschienen in: Electrical Engineering | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is noteworthy today that the creation and popularization of new energy has piqued the world’s interest. As a result, new energy electric cars are liked and acknowledged by most customers as a representation of the development and use of new energy. The advancement of electric vehicles (EVs) has important implications for the sustainable use of energy resources. As the number of new energy EVs grows, so does the need for charging stations for these vehicles. Maximum simplification of charging station distribution may successfully satisfy the charging demands of EVs. As a result, determining the appropriate arrangement of EV charging stations has become an essential study issue. This paper proposed a novel algorithm for EV charging station optimization based on a neural network. The main idea is to optimize the cost of charging cost and the user’s budget. Then, considering the target planning region of the charging station, the historical data is deployed to predict the time distribution of EVs based on the backpropagation neural network algorithm. Finally, the performance of swarm optimization is improved through the dynamic probability mutation method. Simulation results show that the proposed algorithm has better performance than existing algorithms in terms of global economic cost and low-power and high-power charging station’s spatial location.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhong H, Liu J, Zhang X (2023) Charging navigation strategy for electric vehicles considering empty-loading ratio and dynamic electricity price. Sustain Energy Grids Netw 34(3):987–994 Zhong H, Liu J, Zhang X (2023) Charging navigation strategy for electric vehicles considering empty-loading ratio and dynamic electricity price. Sustain Energy Grids Netw 34(3):987–994
2.
Zurück zum Zitat Liu X (2020) Dynamic response characteristics of fast charging station-EVs on the interaction of multiple vehicles. IEEE Access 8:42404–42421CrossRef Liu X (2020) Dynamic response characteristics of fast charging station-EVs on the interaction of multiple vehicles. IEEE Access 8:42404–42421CrossRef
3.
Zurück zum Zitat Castro J, Marques D, Tavares L, Dantas N, Fernandez A et al (2022) Energy and demand forecasting based on logistic growth method for electric vehicle fast charging station planning with PV solar system. Energies 15(17):1–18CrossRef Castro J, Marques D, Tavares L, Dantas N, Fernandez A et al (2022) Energy and demand forecasting based on logistic growth method for electric vehicle fast charging station planning with PV solar system. Energies 15(17):1–18CrossRef
4.
Zurück zum Zitat Chen R, Fan R, Wang D, Yao Q (2023) Effects of multiple incentives on electric vehicle charging infrastructure deployment in China: an evolutionary analysis in a complex network. Energy 264(2):747–758 Chen R, Fan R, Wang D, Yao Q (2023) Effects of multiple incentives on electric vehicle charging infrastructure deployment in China: an evolutionary analysis in a complex network. Energy 264(2):747–758
5.
Zurück zum Zitat Anand M, Sasikala T, Anbarasan M (2019) Energy efficient channel aware multipath routing protocol for mobile ad‐hoc network. Concurr Comput Pract Exp 4(31):e4940 Anand M, Sasikala T, Anbarasan M (2019) Energy efficient channel aware multipath routing protocol for mobile ad‐hoc network. Concurr Comput Pract Exp 4(31):e4940
6.
Zurück zum Zitat Jiang D, Zhu W, Muthu B, Seetharam TG (2021) Importance of implementing smart renewable energy system using heuristic neural decision support system. Sustain Energy Technol Assess 45:101185 Jiang D, Zhu W, Muthu B, Seetharam TG (2021) Importance of implementing smart renewable energy system using heuristic neural decision support system. Sustain Energy Technol Assess 45:101185
7.
Zurück zum Zitat Nanaki E, Koroneous C (2016) Climate change mitigation and deployment of electric vehicles in urban areas. Renew Energy 99:1153–1160CrossRef Nanaki E, Koroneous C (2016) Climate change mitigation and deployment of electric vehicles in urban areas. Renew Energy 99:1153–1160CrossRef
8.
Zurück zum Zitat Sun X, Li Z, Wang X (2020) Technology development of electric vehicles: a review. Energies 13(1):1–25 Sun X, Li Z, Wang X (2020) Technology development of electric vehicles: a review. Energies 13(1):1–25
9.
Zurück zum Zitat Hoehne C, Chester M (2016) Optimizing plug-in electric vehicles and vehicle-to-grid scheduling to minimize carbon emissions. Energy 115:646–657CrossRef Hoehne C, Chester M (2016) Optimizing plug-in electric vehicles and vehicle-to-grid scheduling to minimize carbon emissions. Energy 115:646–657CrossRef
10.
Zurück zum Zitat Zhou G, Zhu Z, Luo S (2022) Location optimization of electric vehicle charging stations: based on cost model and genetic algorithm. Energy 247:437–451CrossRef Zhou G, Zhu Z, Luo S (2022) Location optimization of electric vehicle charging stations: based on cost model and genetic algorithm. Energy 247:437–451CrossRef
11.
Zurück zum Zitat Ren X, Zhang H, Hu R (2019) Location of electric vehicle charging stations: a perspective using the grey decision-making model. Energy 173:548–553CrossRef Ren X, Zhang H, Hu R (2019) Location of electric vehicle charging stations: a perspective using the grey decision-making model. Energy 173:548–553CrossRef
12.
Zurück zum Zitat Liu Z, Wen F, Ledwich G (2013) Optimal planning of electric-vehicle charging stations in distribution systems. IEEE Trans Power Deliv 28(1):102–110CrossRef Liu Z, Wen F, Ledwich G (2013) Optimal planning of electric-vehicle charging stations in distribution systems. IEEE Trans Power Deliv 28(1):102–110CrossRef
13.
Zurück zum Zitat Wang L, Yang C, Zhang Y, Bu F (2022) Research on multi-objective planning of electric vehicle charging stations considering the condition of urban traffic network. Energy Rep 8:11825–11839CrossRef Wang L, Yang C, Zhang Y, Bu F (2022) Research on multi-objective planning of electric vehicle charging stations considering the condition of urban traffic network. Energy Rep 8:11825–11839CrossRef
14.
Zurück zum Zitat Liu H, Li Y, Zhang C, Li J et al (2022) Electric vehicle charging station location model considering charging choice behavior and rand anxiety. Sustainability 14(7):1–23CrossRef Liu H, Li Y, Zhang C, Li J et al (2022) Electric vehicle charging station location model considering charging choice behavior and rand anxiety. Sustainability 14(7):1–23CrossRef
15.
Zurück zum Zitat Hosseini S, Sarder M (2019) Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int J Electr Power Energy Syst 105:110–122CrossRef Hosseini S, Sarder M (2019) Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int J Electr Power Energy Syst 105:110–122CrossRef
16.
Zurück zum Zitat Zhang N, Zhang Y, Ran L, Liu P, Guo Y (2022) Robust location and sizing of electric vehicle battery swapping stations considering user’s choice behaviors. J Energy Storage 55(3):959–971 Zhang N, Zhang Y, Ran L, Liu P, Guo Y (2022) Robust location and sizing of electric vehicle battery swapping stations considering user’s choice behaviors. J Energy Storage 55(3):959–971
17.
Zurück zum Zitat Bayrami S, Galloway S, Burt G (2020) A probabilistic capacity planning methodology for plug-in electric vehicle charging lots with on-site energy storage systems. J Energy Storage 32:730–742 Bayrami S, Galloway S, Burt G (2020) A probabilistic capacity planning methodology for plug-in electric vehicle charging lots with on-site energy storage systems. J Energy Storage 32:730–742
18.
Zurück zum Zitat Luo Q, Tian W, Jia H (2020) Location and capacity model of a charging station for electric vehicles based on commuting demand. IEEJ Trans Electr Electron Eng 15(7):1089–1099CrossRef Luo Q, Tian W, Jia H (2020) Location and capacity model of a charging station for electric vehicles based on commuting demand. IEEJ Trans Electr Electron Eng 15(7):1089–1099CrossRef
19.
Zurück zum Zitat Wang C, He F, Li X (2019) Designing locations and capacities for charging stations to support intercity travel of electric vehicles: an expanded network approach. Transp Res Part C Emerg Technol 102:210–232CrossRef Wang C, He F, Li X (2019) Designing locations and capacities for charging stations to support intercity travel of electric vehicles: an expanded network approach. Transp Res Part C Emerg Technol 102:210–232CrossRef
20.
Zurück zum Zitat Hosseini M, Mirhassani S (2015) Selecting an optimal location for electric recharging stations with queue. KSCE J Civ Eng 19(7):2271–2280CrossRef Hosseini M, Mirhassani S (2015) Selecting an optimal location for electric recharging stations with queue. KSCE J Civ Eng 19(7):2271–2280CrossRef
21.
Zurück zum Zitat Baik S, Jin Y, Yoon Y (2018) Determining equipment capacity of electric vehicle charging station operator for profit maximization. Energies 11(9):1–15CrossRef Baik S, Jin Y, Yoon Y (2018) Determining equipment capacity of electric vehicle charging station operator for profit maximization. Energies 11(9):1–15CrossRef
22.
Zurück zum Zitat Keawthong P, Muangsin V, Gowanit C (2022) Location selection of charging stations for electric taxis: a Bangkok case. Sustainability 14(17):1–18CrossRef Keawthong P, Muangsin V, Gowanit C (2022) Location selection of charging stations for electric taxis: a Bangkok case. Sustainability 14(17):1–18CrossRef
23.
Zurück zum Zitat Leone C, Longo M, Ramirez L (2021) The optimal size of a smart ultra-fast charging station. Electronics 10(23):1–18CrossRef Leone C, Longo M, Ramirez L (2021) The optimal size of a smart ultra-fast charging station. Electronics 10(23):1–18CrossRef
24.
Zurück zum Zitat Qin H, Su X, Ren T, Luo Z (2021) A review on the electric vehicle routing problems: variants and algorithms. Front Eng Manag 8:370–389CrossRef Qin H, Su X, Ren T, Luo Z (2021) A review on the electric vehicle routing problems: variants and algorithms. Front Eng Manag 8:370–389CrossRef
25.
Zurück zum Zitat Zhang H, Tang L, Yang C (2017) Locating electric vehicle charging stations with service capacity using the improved whale optimization algorithm. Adv Eng Inform 41:901–1008 Zhang H, Tang L, Yang C (2017) Locating electric vehicle charging stations with service capacity using the improved whale optimization algorithm. Adv Eng Inform 41:901–1008
26.
Zurück zum Zitat Aldweesh A, Kodati S, Alauthman M, Aqeel I, Khormi IM, Dhasaratham M, Lakshmana Kumar R (2023) Mlora-CBF: efficient cluster-based routing protocol against resource allocation using modified location routing algorithm with cluster-based flooding. Wirel Netw 30:1–23 Aldweesh A, Kodati S, Alauthman M, Aqeel I, Khormi IM, Dhasaratham M, Lakshmana Kumar R (2023) Mlora-CBF: efficient cluster-based routing protocol against resource allocation using modified location routing algorithm with cluster-based flooding. Wirel Netw 30:1–23
27.
Zurück zum Zitat Rajakumari K, Punitha P, Lakshmana Kumar R, Suresh C (2022) Improvising packet delivery and reducing delay ratio in mobile ad hoc network using neighbor coverage-based topology control algorithm. Int J Commun Syst 35(2):e4260CrossRef Rajakumari K, Punitha P, Lakshmana Kumar R, Suresh C (2022) Improvising packet delivery and reducing delay ratio in mobile ad hoc network using neighbor coverage-based topology control algorithm. Int J Commun Syst 35(2):e4260CrossRef
28.
Zurück zum Zitat Kaboli S, Selvaraj J, Rahim N (2017) Rain-fall optimization algorithm: a population-based algorithm for solving constrained optimization problems. J Comput Sci 19:31–42CrossRef Kaboli S, Selvaraj J, Rahim N (2017) Rain-fall optimization algorithm: a population-based algorithm for solving constrained optimization problems. J Comput Sci 19:31–42CrossRef
29.
Zurück zum Zitat Ping L, Sun J, Chen Q (2020) Solving power economic dispatch problem with a novel quantum-behaved particle swarm optimization algorithm. Math Probl Eng 20:1–10CrossRef Ping L, Sun J, Chen Q (2020) Solving power economic dispatch problem with a novel quantum-behaved particle swarm optimization algorithm. Math Probl Eng 20:1–10CrossRef
30.
Zurück zum Zitat Hou H, Tang J, Zhao B, Zhang L, Wang Y, Xie C (2021) Optimal planning of electric vehicle charging station considering mutual benefit of users and power grid. World Electr Veh J 12(4):1–17 Hou H, Tang J, Zhao B, Zhang L, Wang Y, Xie C (2021) Optimal planning of electric vehicle charging station considering mutual benefit of users and power grid. World Electr Veh J 12(4):1–17
32.
Zurück zum Zitat Kong W, Luo Y, Feng G (2019) Optimal location planning method of a fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow, and power grid. Energy 186:826–835CrossRef Kong W, Luo Y, Feng G (2019) Optimal location planning method of a fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow, and power grid. Energy 186:826–835CrossRef
33.
Zurück zum Zitat Huang P, Ma Z, Xiao L (2019) Geographic information system-assisted optimal design of renewable powered electric vehicle charging stations in high-density cities. Appl Energy 255:3855–3867CrossRef Huang P, Ma Z, Xiao L (2019) Geographic information system-assisted optimal design of renewable powered electric vehicle charging stations in high-density cities. Appl Energy 255:3855–3867CrossRef
34.
Zurück zum Zitat Davidov S, Pantos M (2017) Planning of electric vehicle infrastructure based on charging reliability and quality of service. Energy 118:1156–1167CrossRef Davidov S, Pantos M (2017) Planning of electric vehicle infrastructure based on charging reliability and quality of service. Energy 118:1156–1167CrossRef
35.
Zurück zum Zitat Li J, Liu Z, Wang X (2022) Public charging station localization and route planning of electric vehicles considering the operational strategy: a bi-level optimizing approach. Sustain Cities Soc 87:4153–4167CrossRef Li J, Liu Z, Wang X (2022) Public charging station localization and route planning of electric vehicles considering the operational strategy: a bi-level optimizing approach. Sustain Cities Soc 87:4153–4167CrossRef
36.
Zurück zum Zitat Chellappa R, Theodoridis S, Schaik A (2021) Advances in machine learning and deep neural networks. Proc IEEE 109(5):607–611CrossRef Chellappa R, Theodoridis S, Schaik A (2021) Advances in machine learning and deep neural networks. Proc IEEE 109(5):607–611CrossRef
37.
Zurück zum Zitat Ene S, Kucukoglu I, Aksoy A (2016) A genetic algorithm for minimizing energy consumption in warehouses. Energy 114:973–980CrossRef Ene S, Kucukoglu I, Aksoy A (2016) A genetic algorithm for minimizing energy consumption in warehouses. Energy 114:973–980CrossRef
38.
Zurück zum Zitat Ang K, Chow C, Kenawy E, Abdelhamid A, Ibrahim A, Karim F (2022) A modified particle swarm optimization algorithm for optimizing artificial neural networks in classification tasks. Processes 10(12):1–19CrossRef Ang K, Chow C, Kenawy E, Abdelhamid A, Ibrahim A, Karim F (2022) A modified particle swarm optimization algorithm for optimizing artificial neural networks in classification tasks. Processes 10(12):1–19CrossRef
39.
Zurück zum Zitat Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient. IEEE Trans Evol Comput 8(3):240–255CrossRef Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient. IEEE Trans Evol Comput 8(3):240–255CrossRef
Metadaten
Titel
Optimization algorithm analysis of EV waste battery recycling logistics based on neural network
verfasst von
Zhang Yongxiang
Lai Xinyu
Liu Chunhong
Qin Bin
Publikationsdatum
01.03.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2024
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-02200-y

Weitere Artikel der Ausgabe 2/2024

Electrical Engineering 2/2024 Zur Ausgabe