Skip to main content
Erschienen in: Archive of Applied Mechanics 7/2019

28.11.2018 | Original

\({\mathcal {H}}_{2}\) optimization and numerical study of inerter-based vibration isolation system helical spring fatigue life

Erschienen in: Archive of Applied Mechanics | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an optimization and numerical analysis of vibration-induced fatigue in a two degree-of-freedom inerter-based vibration isolation system. The system is comprised of a primary, e.g. source body, and a secondary, e.g. receiving body, mutually connected through an isolator. The isolator includes a spring, a dashpot and an inerter. Inerter is a mechanical device which produces a force proportional to relative acceleration between its terminals. A broadband frequency force excitation of the primary body is imposed throughout the study. The goal of the proposed optimization is to prolong the fatigue life of the ground connecting helical spring of the secondary body. The optimization is based on minimizing separately the displacement and velocity amplitudes. Both optimization criteria are compared with regard to spring fatigue life improvement for fair benchmark comparison. The inerter-based optimized systems, in which the \({\mathcal {H}}_{2}\) index of the receiving body is minimized, are also compared with the optimized systems without inerter. Notable improvements are observed in inerter-based systems due to the inclusion of an optimally tuned inerter in the isolator. The proposed analytical vibration fatigue method optimization results are compared with the finite element method results, and a very good agreement is observed. Most accurate helical spring deflection and stress correction factors are discussed and determined. Furthermore, the inerter concept is successfully implemented into finite element-based dynamic solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wahl, A.M.: Mechanical Springs, 1st edn. Penton Pub. Co., Cleveland (1944) Wahl, A.M.: Mechanical Springs, 1st edn. Penton Pub. Co., Cleveland (1944)
3.
Zurück zum Zitat Rao, S.S.: Mechanical Vibrations, Sixth Edition in SI Units, Global Edition. Pearson, London (2017) Rao, S.S.: Mechanical Vibrations, Sixth Edition in SI Units, Global Edition. Pearson, London (2017)
5.
Zurück zum Zitat Bishop, N.W.M., Sherratt, F.: Finite Element Based Fatigue Calculations. NAFEMS Ltd, Farnham (2000) Bishop, N.W.M., Sherratt, F.: Finite Element Based Fatigue Calculations. NAFEMS Ltd, Farnham (2000)
6.
Zurück zum Zitat Todinov, M.T.: Maximum principal tensile stress and fatigue crack origin for compression springs. Int. J. Mech. Sci. 41(3), 357–370 (1999)CrossRefMATH Todinov, M.T.: Maximum principal tensile stress and fatigue crack origin for compression springs. Int. J. Mech. Sci. 41(3), 357–370 (1999)CrossRefMATH
7.
Zurück zum Zitat Del Llano-Vizcaya, L., Rubio-González, C., Mesmacque, G., Cervantes-Hernandez, T.: Multiaxial fatigue and failure analysis of helical compression springs. Eng. Fail. Anal. 13(8), 1303–1313 (2006)CrossRef Del Llano-Vizcaya, L., Rubio-González, C., Mesmacque, G., Cervantes-Hernandez, T.: Multiaxial fatigue and failure analysis of helical compression springs. Eng. Fail. Anal. 13(8), 1303–1313 (2006)CrossRef
8.
Zurück zum Zitat Timoshenko, S.P.: Strength of Materials, Part I, Elementary Theory and Problems, 2nd edn. D. Van Nostrand. Company Inc, New York (1940)MATH Timoshenko, S.P.: Strength of Materials, Part I, Elementary Theory and Problems, 2nd edn. D. Van Nostrand. Company Inc, New York (1940)MATH
9.
Zurück zum Zitat Göhner, O.: Schubspannungsverteilung im Querschnitt einer Schraubenfeder. Ingenieur-Archiv 1(5), 619–644 (1930)CrossRefMATH Göhner, O.: Schubspannungsverteilung im Querschnitt einer Schraubenfeder. Ingenieur-Archiv 1(5), 619–644 (1930)CrossRefMATH
11.
Zurück zum Zitat Berry, W.R.: Practical problems in spring design. Proc. Inst. Mech. Eng. 139(1), 431–524 (1938)CrossRef Berry, W.R.: Practical problems in spring design. Proc. Inst. Mech. Eng. 139(1), 431–524 (1938)CrossRef
12.
Zurück zum Zitat Ancker Jr., C.J., Goodier, J.N.: Pitch and curvature correction for helical springs. ASME J. Appl. Mech. 25(4), 466–470 (1958)MATH Ancker Jr., C.J., Goodier, J.N.: Pitch and curvature correction for helical springs. ASME J. Appl. Mech. 25(4), 466–470 (1958)MATH
13.
Zurück zum Zitat Research Committee on the Analysis of Helical Spring: Report of Research Committee on the Analysis of Helical Spring. Trans. Jpn. Soc. Spring Eng. 2004(49), 35–75 (2004) Research Committee on the Analysis of Helical Spring: Report of Research Committee on the Analysis of Helical Spring. Trans. Jpn. Soc. Spring Eng. 2004(49), 35–75 (2004)
14.
Zurück zum Zitat Calder, G.A., Jenkins, C.: Stress analysis of a helical coil automobile spring using rosettes. Exp. Tech. 12(2), 17–20 (1988)CrossRef Calder, G.A., Jenkins, C.: Stress analysis of a helical coil automobile spring using rosettes. Exp. Tech. 12(2), 17–20 (1988)CrossRef
15.
Zurück zum Zitat Lin, Y., Pisano, A.P.: General dynamic equations of helical springs with static solution and experimental verification. ASME J. Appl. Mech. 54(4), 910–917 (1987)CrossRef Lin, Y., Pisano, A.P.: General dynamic equations of helical springs with static solution and experimental verification. ASME J. Appl. Mech. 54(4), 910–917 (1987)CrossRef
16.
Zurück zum Zitat Yazdani Sarvestani, H., Akbarzadeh, A.H.: Thick isotropic curved tubes: three-dimensional stress analysis. Arch. Appl. Mech. 87(6), 927–947 (2017)CrossRef Yazdani Sarvestani, H., Akbarzadeh, A.H.: Thick isotropic curved tubes: three-dimensional stress analysis. Arch. Appl. Mech. 87(6), 927–947 (2017)CrossRef
17.
Zurück zum Zitat Bockwoldt, T.S., Munsick, G.A.: Correction to design equation for spring diametral growth upon compression. Trans. ASME J. Mech. Des. 135(12), 124503–124503-4 (2013)CrossRef Bockwoldt, T.S., Munsick, G.A.: Correction to design equation for spring diametral growth upon compression. Trans. ASME J. Mech. Des. 135(12), 124503–124503-4 (2013)CrossRef
18.
Zurück zum Zitat Burns, S.J.: The relation between helical spring compliances with free and fixed end rotations. ASME J. Appl. Mech. 78(6), 061005–061005-5 (2011)CrossRef Burns, S.J.: The relation between helical spring compliances with free and fixed end rotations. ASME J. Appl. Mech. 78(6), 061005–061005-5 (2011)CrossRef
19.
Zurück zum Zitat Krużelecki, J.: Parametrical optimization of compression helical springs against instability. Struct. Multidiscip. Optim. 13, 205–212 (1997)CrossRef Krużelecki, J.: Parametrical optimization of compression helical springs against instability. Struct. Multidiscip. Optim. 13, 205–212 (1997)CrossRef
20.
Zurück zum Zitat Mlikota, M., Schmauder, S., Božić, Ž.: Calculation of the Wöhler (S–N) curve using a two-scale model. Int. J. Fatigue 14, 289–297 (2018)CrossRef Mlikota, M., Schmauder, S., Božić, Ž.: Calculation of the Wöhler (S–N) curve using a two-scale model. Int. J. Fatigue 14, 289–297 (2018)CrossRef
21.
Zurück zum Zitat Mlikota, M., Schmauder, S., Božić, Ž., Hummel, M.: Modelling of overload effects on fatigue crack initiation in case of carbon steel. Fatigue Fract. Eng. Mater. Struct. 40, 1182–1190 (2017)CrossRef Mlikota, M., Schmauder, S., Božić, Ž., Hummel, M.: Modelling of overload effects on fatigue crack initiation in case of carbon steel. Fatigue Fract. Eng. Mater. Struct. 40, 1182–1190 (2017)CrossRef
22.
Zurück zum Zitat Božić, Ž., Schmauder, S., Mlikota, M., Hummel, M.: Multiscale fatigue crack growth modelling for welded stiffened panels. Fatigue Fract. Eng. Mater. Struct. 37, 1025–1033 (2014)CrossRef Božić, Ž., Schmauder, S., Mlikota, M., Hummel, M.: Multiscale fatigue crack growth modelling for welded stiffened panels. Fatigue Fract. Eng. Mater. Struct. 37, 1025–1033 (2014)CrossRef
23.
Zurück zum Zitat Rahman, M.M., Ariffin, A.K., Abdullah, S.: Finite element based vibration fatigue analysis of a new twostroke linear generator engine component. Int. J. Mech. Mater. Eng. 2(1), 63–74 (2007) Rahman, M.M., Ariffin, A.K., Abdullah, S.: Finite element based vibration fatigue analysis of a new twostroke linear generator engine component. Int. J. Mech. Mater. Eng. 2(1), 63–74 (2007)
24.
Zurück zum Zitat Halfpenny, A.: A frequency domain approach for fatigue life estimation from finite element analysis. Key Eng. Mater. 167–168, 401–410 (1999)CrossRef Halfpenny, A.: A frequency domain approach for fatigue life estimation from finite element analysis. Key Eng. Mater. 167–168, 401–410 (1999)CrossRef
25.
Zurück zum Zitat Mršnik, M., Slavič, J., Boltežar, M.: Multiaxial vibration fatigue: a theoretical and experimental comparison. Mech. Syst. Signal Process. 76–77, 409–423 (2016)CrossRef Mršnik, M., Slavič, J., Boltežar, M.: Multiaxial vibration fatigue: a theoretical and experimental comparison. Mech. Syst. Signal Process. 76–77, 409–423 (2016)CrossRef
26.
Zurück zum Zitat Mršnik, M., Slavič, J., Boltežar, M.: Frequency-domain methods for a vibration-fatigue-life estimation: application to real data. Int. J. Fatigue 47, 8–17 (2013)CrossRef Mršnik, M., Slavič, J., Boltežar, M.: Frequency-domain methods for a vibration-fatigue-life estimation: application to real data. Int. J. Fatigue 47, 8–17 (2013)CrossRef
27.
Zurück zum Zitat Česnik, M., Slavič, J.: Vibrational fatigue and structural dynamics for harmonic and random loads. Strojniški vestnik J. Mech. Eng. 60(5), 339–348 (2014)CrossRef Česnik, M., Slavič, J.: Vibrational fatigue and structural dynamics for harmonic and random loads. Strojniški vestnik J. Mech. Eng. 60(5), 339–348 (2014)CrossRef
28.
Zurück zum Zitat Braccesi, C., Cianetti, F., Lori, G., Pioli, D.: A frequency method for fatigue life estimation of mechanical components under bimodal random stress process. Int. J. Struct. Integrity Durab. 1(4), 277–290 (2005)MATH Braccesi, C., Cianetti, F., Lori, G., Pioli, D.: A frequency method for fatigue life estimation of mechanical components under bimodal random stress process. Int. J. Struct. Integrity Durab. 1(4), 277–290 (2005)MATH
29.
Zurück zum Zitat Bonte, M.H.A., de Boer, A., Liebregts, R.: Prediction of mechanical fatigue caused by multiple random excitations. Proc. ISMA 2004, 697–708 (2004) Bonte, M.H.A., de Boer, A., Liebregts, R.: Prediction of mechanical fatigue caused by multiple random excitations. Proc. ISMA 2004, 697–708 (2004)
30.
Zurück zum Zitat Zhou, Y., Fei, Q., Wu, S.: Utilization of modal stress approach in random-vibration fatigue evaluation. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231(14), 2603–2615 (2016)CrossRef Zhou, Y., Fei, Q., Wu, S.: Utilization of modal stress approach in random-vibration fatigue evaluation. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231(14), 2603–2615 (2016)CrossRef
31.
Zurück zum Zitat Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982)CrossRef Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982)CrossRef
32.
Zurück zum Zitat Alujević, N., Zhao, G., Depraetere, B., Sas, P., Pluymers, B., Desmet, W.: \({\cal{H}}_{2}\) optimal vibration control using inertial actuators and a comparison with tuned mass dampers. J. Sound Vib. 333(18), 4073–4083 (2014)CrossRef Alujević, N., Zhao, G., Depraetere, B., Sas, P., Pluymers, B., Desmet, W.: \({\cal{H}}_{2}\) optimal vibration control using inertial actuators and a comparison with tuned mass dampers. J. Sound Vib. 333(18), 4073–4083 (2014)CrossRef
33.
Zurück zum Zitat Zhao, G., Alujević, N., Depraetere, B., Sas, P.: Dynamic analysis and \({\cal{H}}_{2}\) optimisation of a piezo-based tuned vibration absorber. J. Intell. Mater. Syst. Struct. 26(15), 1995–2010 (2014)CrossRef Zhao, G., Alujević, N., Depraetere, B., Sas, P.: Dynamic analysis and \({\cal{H}}_{2}\) optimisation of a piezo-based tuned vibration absorber. J. Intell. Mater. Syst. Struct. 26(15), 1995–2010 (2014)CrossRef
34.
Zurück zum Zitat Cheung, Y.L., Wong, W.O., Cheng, L.: Optimization of a hybrid vibration absorber for vibration control of structures under random force excitation. J. Sound Vib. 332(3), 494–509 (2013)CrossRef Cheung, Y.L., Wong, W.O., Cheng, L.: Optimization of a hybrid vibration absorber for vibration control of structures under random force excitation. J. Sound Vib. 332(3), 494–509 (2013)CrossRef
35.
Zurück zum Zitat Alujević, N., Čakmak, D., Wolf, H., Jokić, M.: Passive and active vibration isolation systems using inerter. J. Sound Vib. 418, 163–183 (2018)CrossRef Alujević, N., Čakmak, D., Wolf, H., Jokić, M.: Passive and active vibration isolation systems using inerter. J. Sound Vib. 418, 163–183 (2018)CrossRef
36.
Zurück zum Zitat Alujević, N., Wolf, H., Gardonio, P., Tomac, I.: Stability and performance limits for active vibration isolation using blended velocity feedback. J. Sound Vib. 330, 4981–4997 (2011)CrossRef Alujević, N., Wolf, H., Gardonio, P., Tomac, I.: Stability and performance limits for active vibration isolation using blended velocity feedback. J. Sound Vib. 330, 4981–4997 (2011)CrossRef
37.
Zurück zum Zitat Alujević, N., Gardonio, P., Frampton, K.D.: Smart double panel for the sound radiation control: blended velocity feedback. AIAA J. 49(6), 1123–1134 (2011)CrossRef Alujević, N., Gardonio, P., Frampton, K.D.: Smart double panel for the sound radiation control: blended velocity feedback. AIAA J. 49(6), 1123–1134 (2011)CrossRef
38.
Zurück zum Zitat Caiazzo, A., Alujević, N., Pluymers, B., Desmet, W.: Active control of turbulent boundary layer-induced sound transmission through the cavity-backed double panels. J. Sound Vib. 422, 161–188 (2018)CrossRef Caiazzo, A., Alujević, N., Pluymers, B., Desmet, W.: Active control of turbulent boundary layer-induced sound transmission through the cavity-backed double panels. J. Sound Vib. 422, 161–188 (2018)CrossRef
39.
Zurück zum Zitat Senjanović, I., Alujević, N., Ćatipović, I., Čakmak, D., Vladimir, N.: Vibration analysis of rotating toroidal shell by the Rayleigh–Ritz method and Fourier series. Eng. Struct. 173, 870–891 (2018)CrossRef Senjanović, I., Alujević, N., Ćatipović, I., Čakmak, D., Vladimir, N.: Vibration analysis of rotating toroidal shell by the Rayleigh–Ritz method and Fourier series. Eng. Struct. 173, 870–891 (2018)CrossRef
40.
Zurück zum Zitat Dassault Systèmes: Abaqus 6.9 User’s Guide and Theoretical Manual. Hibbitt, Karlsson & Sorensen Inc., Providence (2009) Dassault Systèmes: Abaqus 6.9 User’s Guide and Theoretical Manual. Hibbitt, Karlsson & Sorensen Inc., Providence (2009)
41.
Zurück zum Zitat SafeTechnology, Fe-Safe 6 User Manual (2011) SafeTechnology, Fe-Safe 6 User Manual (2011)
42.
Zurück zum Zitat Dassault Systèmes: Catia V5R19 Documentation: Finite Element Reference Guide (2007) Dassault Systèmes: Catia V5R19 Documentation: Finite Element Reference Guide (2007)
43.
Zurück zum Zitat Kong, Y.S., Omar, M.Z., Chua, L.B., Abdullah, S.: Fatigue life prediction of parabolic leaf spring under various road conditions. Eng. Fail. Anal. 46, 92–103 (2014)CrossRef Kong, Y.S., Omar, M.Z., Chua, L.B., Abdullah, S.: Fatigue life prediction of parabolic leaf spring under various road conditions. Eng. Fail. Anal. 46, 92–103 (2014)CrossRef
Metadaten
Titel
optimization and numerical study of inerter-based vibration isolation system helical spring fatigue life
Publikationsdatum
28.11.2018
Erschienen in
Archive of Applied Mechanics / Ausgabe 7/2019
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1495-2

Weitere Artikel der Ausgabe 7/2019

Archive of Applied Mechanics 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.