Skip to main content
Erschienen in: Journal of Computational Electronics 1/2020

01.01.2020

Optimization-based design of a single-layer wideband reflectarray antenna in the terahertz regime

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An optimization-based metasurface is proposed and employed to design a wideband single-layer reflectarray antenna for use in the terahertz (THz) regime. The random hill-climbing optimization method is utilized to obtain a wideband unit cell. A multiobjective fitness function is defined to consider three required design aims, whereas an established link between MATLAB and HFSS software is employed to simulate the required periodic metasurface. The final created unit cell has a remarkable bandwidth of 44.89% together with −0.44 dB average variation of the magnitude of the reflection coefficient. Moreover, the phase variation versus various scales of the metallic surface of the cell is more than 300° at all of the desired frequencies between 0.95 THz and 1.5 THz. Two different reflectarray antennas are proposed based on the optimized cell, and two excitation scenarios are implemented to investigate the performance of the designed reflectarray antennas. In the first scenario, the metasurface is designed to deflect a plane wave with angle of incidence of \(30^{^\circ }\) to the normal direction. In the second one, a THz feeding horn illuminates a metasurface reflector including 201 elements. According to the simulation results, 3-dB and 1-dB gain bandwidths of 39.67% (0.99–1.48 THz) and 20.51% (1.05–1.29 THz), respectively, are achieved, whereas the maximum gain is 19.8 dBi at 1.2 THz.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Reid, C.B., Pickwell-MacPherson, E., Laufer, J.G., Gibson, A.P., Hebden, J.C., Wallace, V.P.: Accuracy and resolution of THz reflection spectroscopy for medical imaging. Phys. Med. Biol. 55, 4825 (2010)CrossRef Reid, C.B., Pickwell-MacPherson, E., Laufer, J.G., Gibson, A.P., Hebden, J.C., Wallace, V.P.: Accuracy and resolution of THz reflection spectroscopy for medical imaging. Phys. Med. Biol. 55, 4825 (2010)CrossRef
2.
Zurück zum Zitat Yu, C., Fan, S., Sun, Y., Pickwell-MacPherson, E.: The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2, 33 (2012) Yu, C., Fan, S., Sun, Y., Pickwell-MacPherson, E.: The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2, 33 (2012)
3.
Zurück zum Zitat Luukanen, A., Appleby, R., Kemp, M., Salmon, N.: Millimeter-wave and terahertz imaging in security applications. Terahertz Spectrosc. Imaging 171, 491–520 (2012)CrossRef Luukanen, A., Appleby, R., Kemp, M., Salmon, N.: Millimeter-wave and terahertz imaging in security applications. Terahertz Spectrosc. Imaging 171, 491–520 (2012)CrossRef
4.
Zurück zum Zitat Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Technol. 50, 910–928 (2002)CrossRef Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Technol. 50, 910–928 (2002)CrossRef
5.
Zurück zum Zitat Lin, Y., Yao, H., Ju, X., Chen, Y., Zhong, S., Wang, X.: Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining. Opt. Express 25, 25125–25134 (2017)CrossRef Lin, Y., Yao, H., Ju, X., Chen, Y., Zhong, S., Wang, X.: Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining. Opt. Express 25, 25125–25134 (2017)CrossRef
6.
Zurück zum Zitat Ye, L., Zeng, F., Zhang, Y., Liu, Q.H.: Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range. Carbon 148, 317–325 (2019)CrossRef Ye, L., Zeng, F., Zhang, Y., Liu, Q.H.: Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range. Carbon 148, 317–325 (2019)CrossRef
7.
Zurück zum Zitat Zhou, D., Xiao, L., Xiao, B., Guo, F., Yu, X., Ling, H., Xu, Z.: A high-performance terahertz modulator based on double-layer graphene. Opt. Commun. 427, 215–219 (2018)CrossRef Zhou, D., Xiao, L., Xiao, B., Guo, F., Yu, X., Ling, H., Xu, Z.: A high-performance terahertz modulator based on double-layer graphene. Opt. Commun. 427, 215–219 (2018)CrossRef
8.
Zurück zum Zitat Mohammadi Nemat-Abad, H., Zareian-Jahromi, E., Basiri, R.: Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications. Eng. Sci. Technol. Int. J. 22, 862–868 (2019)CrossRef Mohammadi Nemat-Abad, H., Zareian-Jahromi, E., Basiri, R.: Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications. Eng. Sci. Technol. Int. J. 22, 862–868 (2019)CrossRef
9.
Zurück zum Zitat Koutsoupidou, M., Karanasiou, I.S., Uzunoglu, N.: Substrate constructed by an array of split ring resonators for a THz planar antenna. J. Comput. Electron. 13(3), 593–598 (2014)CrossRef Koutsoupidou, M., Karanasiou, I.S., Uzunoglu, N.: Substrate constructed by an array of split ring resonators for a THz planar antenna. J. Comput. Electron. 13(3), 593–598 (2014)CrossRef
10.
Zurück zum Zitat Encinar, J.A.: Recent advances in reflectarray antennas. In Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1–6 (2010) Encinar, J.A.: Recent advances in reflectarray antennas. In Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1–6 (2010)
11.
Zurück zum Zitat Fazaelifar, M., Jam, S., Basiri, R.: Design and fabrication of a wideband reflectarray antenna in Ku and K bands. AEU Int. J. Electron. Commun. 95, 304–312 (2018)CrossRef Fazaelifar, M., Jam, S., Basiri, R.: Design and fabrication of a wideband reflectarray antenna in Ku and K bands. AEU Int. J. Electron. Commun. 95, 304–312 (2018)CrossRef
12.
Zurück zum Zitat Ginn, J.C., Lail, B.A., Boreman, G.D.: Phase characterization of reflectarray elements at infrared. IEEE Trans. Antennas Propag. 55, 2889–2893 (2007)CrossRef Ginn, J.C., Lail, B.A., Boreman, G.D.: Phase characterization of reflectarray elements at infrared. IEEE Trans. Antennas Propag. 55, 2889–2893 (2007)CrossRef
13.
Zurück zum Zitat Yang, F., Nayeri, P., Elsherbeni, A.Z., Ginn, J.C., Shelton, D.J., Boreman, G.D., Rahmat-Samii, Y.: Reflectarray design at infrared frequencies: Effects and models of material loss. IEEE Trans. Antennas Propag. 60, 4202–4209 (2012)CrossRef Yang, F., Nayeri, P., Elsherbeni, A.Z., Ginn, J.C., Shelton, D.J., Boreman, G.D., Rahmat-Samii, Y.: Reflectarray design at infrared frequencies: Effects and models of material loss. IEEE Trans. Antennas Propag. 60, 4202–4209 (2012)CrossRef
14.
Zurück zum Zitat Niu, T., Withayachumnankul, W., Ung, B.S., Menekse, H., Bhaskaran, M., Sriram, S., Fumeaux, C.: Experimental demonstration of reflectarray antennas at terahertz frequencies. Opt. Express 21, 2875–2889 (2013)CrossRef Niu, T., Withayachumnankul, W., Ung, B.S., Menekse, H., Bhaskaran, M., Sriram, S., Fumeaux, C.: Experimental demonstration of reflectarray antennas at terahertz frequencies. Opt. Express 21, 2875–2889 (2013)CrossRef
15.
Zurück zum Zitat Headland, D., Carrasco, E., Nirantar, S., Withayachumnankul, W., Gutruf, P., Schwarz, J., Abbott, D., Bhaskaran, M., Sriram, S., Perruisseau-Carrier, J., Fumeaux, C.: Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface. ACS Photon. 3, 1019–1026 (2016)CrossRef Headland, D., Carrasco, E., Nirantar, S., Withayachumnankul, W., Gutruf, P., Schwarz, J., Abbott, D., Bhaskaran, M., Sriram, S., Perruisseau-Carrier, J., Fumeaux, C.: Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface. ACS Photon. 3, 1019–1026 (2016)CrossRef
16.
Zurück zum Zitat Headland, D., Niu, T., Carrasco, E., Abbott, D., Sriram, S., Bhaskaran, M., Fumeaux, C., Withayachumnankul, W.: Terahertz reflectarrays and nonuniform metasurfaces. IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2016)CrossRef Headland, D., Niu, T., Carrasco, E., Abbott, D., Sriram, S., Bhaskaran, M., Fumeaux, C., Withayachumnankul, W.: Terahertz reflectarrays and nonuniform metasurfaces. IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2016)CrossRef
17.
Zurück zum Zitat Kleine-Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Millim. Terahertz Waves. 32, 143–171 (2011)CrossRef Kleine-Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Millim. Terahertz Waves. 32, 143–171 (2011)CrossRef
18.
Zurück zum Zitat Pozar, D.M., Targonski, S.D., Syrigos, H.D.: Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 45, 287–296 (1997)CrossRef Pozar, D.M., Targonski, S.D., Syrigos, H.D.: Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 45, 287–296 (1997)CrossRef
19.
Zurück zum Zitat Nouri, F., Jam, S., Basiri, R.: The design of a wideband single-layer dual-band reflectarray antenna based on an optimized element. J. Comput. Electron. 18, 178–188 (2019)CrossRef Nouri, F., Jam, S., Basiri, R.: The design of a wideband single-layer dual-band reflectarray antenna based on an optimized element. J. Comput. Electron. 18, 178–188 (2019)CrossRef
20.
Zurück zum Zitat Huang, J.: Reflectarray Antennas. Reflectarray Antenna Encyclopedia of RF and Microwave Engineering. Wiley, London (2005) Huang, J.: Reflectarray Antennas. Reflectarray Antenna Encyclopedia of RF and Microwave Engineering. Wiley, London (2005)
21.
Zurück zum Zitat Berry, D., Malech, R., Kennedy, W.: The reflectarray antenna. IEEE Trans. Antennas Propag. 11, 645–651 (1963)CrossRef Berry, D., Malech, R., Kennedy, W.: The reflectarray antenna. IEEE Trans. Antennas Propag. 11, 645–651 (1963)CrossRef
22.
Zurück zum Zitat Miao, Z.W., Hao, Z.C., Wang, Y., Jin, B.B., Wu, J.B., Hong, W.: A 400-GHz high-gain quartz-based single layered folded reflectarray antenna for terahertz applications. IEEE Trans. Terahertz Sci. Technol. 9, 78–88 (2018)CrossRef Miao, Z.W., Hao, Z.C., Wang, Y., Jin, B.B., Wu, J.B., Hong, W.: A 400-GHz high-gain quartz-based single layered folded reflectarray antenna for terahertz applications. IEEE Trans. Terahertz Sci. Technol. 9, 78–88 (2018)CrossRef
23.
Zurück zum Zitat Deng, R., Xu, S., Yang, F., Li, M.: A single-layer high-efficiency wideband reflectarray using hybrid design approach. IEEE Antennas Wirel. Propag. Lett. 16, 884–887 (2016)CrossRef Deng, R., Xu, S., Yang, F., Li, M.: A single-layer high-efficiency wideband reflectarray using hybrid design approach. IEEE Antennas Wirel. Propag. Lett. 16, 884–887 (2016)CrossRef
24.
Zurück zum Zitat Gianvittorio, J.P., Rahmat-Samii, Y.: Reconfigurable patch antennas for steerable reflectarray applications. IEEE Trans. Antennas Propag. 54, 1388–1392 (2006)CrossRef Gianvittorio, J.P., Rahmat-Samii, Y.: Reconfigurable patch antennas for steerable reflectarray applications. IEEE Trans. Antennas Propag. 54, 1388–1392 (2006)CrossRef
25.
Zurück zum Zitat Hu, W., Cahill, R., Encinar, J.A., Dickie, R., Gamble, H., Fusco, V., Grant, N.: Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal. IEEE Trans. Antennas Propag. 56, 3112–3117 (2008)CrossRef Hu, W., Cahill, R., Encinar, J.A., Dickie, R., Gamble, H., Fusco, V., Grant, N.: Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal. IEEE Trans. Antennas Propag. 56, 3112–3117 (2008)CrossRef
26.
Zurück zum Zitat Hasani, H., Tamagnone, M., Capdevila, S., Moldovan, C.F., Maoddi, P., Ionescu, A.M., Peixeiro, C., Mosig, J.R., Skrivervik, A.K., Perruisseau-Carrier, J.: Design, fabrication, and measurement. IEEE Trans. Terahertz Sci. Technol. 6, 268–277 (2016)CrossRef Hasani, H., Tamagnone, M., Capdevila, S., Moldovan, C.F., Maoddi, P., Ionescu, A.M., Peixeiro, C., Mosig, J.R., Skrivervik, A.K., Perruisseau-Carrier, J.: Design, fabrication, and measurement. IEEE Trans. Terahertz Sci. Technol. 6, 268–277 (2016)CrossRef
27.
Zurück zum Zitat Niu, T., Withayachumnankul, W., Upadhyay, A., Gutruf, P., Abbott, D., Bhaskaran, M., Sriram, S., Fumeaux, C.: Terahertz reflectarray as a polarizing beam splitter. Opt. Express 22, 16148–16160 (2014)CrossRef Niu, T., Withayachumnankul, W., Upadhyay, A., Gutruf, P., Abbott, D., Bhaskaran, M., Sriram, S., Fumeaux, C.: Terahertz reflectarray as a polarizing beam splitter. Opt. Express 22, 16148–16160 (2014)CrossRef
28.
Zurück zum Zitat Carrasco, E., Perruisseau-Carrier, J.: Reflectarray antenna at terahertz using graphene. IEEE Antennas Wirel. Propag. Lett. 12, 253–256 (2013)CrossRef Carrasco, E., Perruisseau-Carrier, J.: Reflectarray antenna at terahertz using graphene. IEEE Antennas Wirel. Propag. Lett. 12, 253–256 (2013)CrossRef
30.
Zurück zum Zitat Wang, Q., Shao, Z., Li, P., Li, L., Cheng, Y.: A dual polarization, broadband, millimeter-wave reflectarray using modified cross loop element. Microwave Opt. Technol. Lett. 56, 287–293 (2014)CrossRef Wang, Q., Shao, Z., Li, P., Li, L., Cheng, Y.: A dual polarization, broadband, millimeter-wave reflectarray using modified cross loop element. Microwave Opt. Technol. Lett. 56, 287–293 (2014)CrossRef
31.
Zurück zum Zitat Wang, Q., Shao, Z.H., Cheng, Y.J., Li, P.K.: Broadband low-cost reflectarray using modified double-square loop loaded by spiral stubs. IEEE Trans. Antennas Propag. 63, 4224–4229 (2015)CrossRef Wang, Q., Shao, Z.H., Cheng, Y.J., Li, P.K.: Broadband low-cost reflectarray using modified double-square loop loaded by spiral stubs. IEEE Trans. Antennas Propag. 63, 4224–4229 (2015)CrossRef
32.
Zurück zum Zitat Encinar, J.A., Zornoza, J.A.: Broadband design of three-layer printed reflectarrays. IEEE Trans. Antennas Propag. 51, 1662–1664 (2003)CrossRef Encinar, J.A., Zornoza, J.A.: Broadband design of three-layer printed reflectarrays. IEEE Trans. Antennas Propag. 51, 1662–1664 (2003)CrossRef
33.
Zurück zum Zitat Ismail, M.Y., Kiyani, A.: Characterization of printed reflectarray elements on variable substrate thicknesses. IET Microw. Antennas Propag. 8, 312–316 (2014) Ismail, M.Y., Kiyani, A.: Characterization of printed reflectarray elements on variable substrate thicknesses. IET Microw. Antennas Propag. 8, 312–316 (2014)
34.
Zurück zum Zitat Encinar, J.A.: Design of a dual-frequency reflectarray using microstrip stacked patches of variable size. Electron. Lett. 32, 1049–1050 (1996)CrossRef Encinar, J.A.: Design of a dual-frequency reflectarray using microstrip stacked patches of variable size. Electron. Lett. 32, 1049–1050 (1996)CrossRef
35.
Zurück zum Zitat Chaharmir, M.R., Shaker, J.: Broadband reflectarray with combination of cross and rectangle loop elements. Electron. Lett. 44, 658–659 (2008)CrossRef Chaharmir, M.R., Shaker, J.: Broadband reflectarray with combination of cross and rectangle loop elements. Electron. Lett. 44, 658–659 (2008)CrossRef
36.
Zurück zum Zitat Skalak, D.B.: 1994 In Machine Learning Proceedings Morgan Kaufmann, pp. 293–301 (1994) Skalak, D.B.: 1994 In Machine Learning Proceedings Morgan Kaufmann, pp. 293–301 (1994)
38.
Zurück zum Zitat Qu, S.W., Wu, W.W., Ng, K.B., Chen, B.J., Chan, C.H., Pun, E.Y.: 2014 In 2014 URSI General Assembly and Scientific Symposium (URSI GASS), IEEE, pp. 1–4 (2014) Qu, S.W., Wu, W.W., Ng, K.B., Chen, B.J., Chan, C.H., Pun, E.Y.: 2014 In 2014 URSI General Assembly and Scientific Symposium (URSI GASS), IEEE, pp. 1–4 (2014)
39.
Zurück zum Zitat Fan, K., Hao, Z.C., Yuan, Q., Hong, W.: Development of a high gain 325–500 GHz antenna using quasi-planar reflectors. IEEE Trans. Antennas Propag. 65, 3384–3391 (2017)MathSciNetCrossRef Fan, K., Hao, Z.C., Yuan, Q., Hong, W.: Development of a high gain 325–500 GHz antenna using quasi-planar reflectors. IEEE Trans. Antennas Propag. 65, 3384–3391 (2017)MathSciNetCrossRef
Metadaten
Titel
Optimization-based design of a single-layer wideband reflectarray antenna in the terahertz regime
Publikationsdatum
01.01.2020
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2020
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01435-y

Weitere Artikel der Ausgabe 1/2020

Journal of Computational Electronics 1/2020 Zur Ausgabe

Neuer Inhalt