Skip to main content
Erschienen in: Microsystem Technologies 7/2016

08.02.2016 | Technical Paper

Optimization method for designing multimodal piezoelectric MEMS energy harvesters

verfasst von: G. Sordo, E. Serra, U. Schmid, J. Iannacci

Erschienen in: Microsystem Technologies | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy harvesters (EH) are devices that convert environmental energy (i.e. thermal, vibrational or electromagnetic) into electrical energy. One of the most promising solutions consists in transforming energy from vibrations using a piezoelectric material placed onto a mechanical resonator. The intrinsic drawback of this solution is the typically high quality factor of the device which works effectively only within a narrow bandwidth. To overcome this limitation it is possible to tune the mechanical resonance of the device, to introduce non-linear elements (e.g. magnets) or to design the mechanical resonator with a multimodal behaviour. In ultra low power applications the aspect of integration is of utmost importance and so micro electro-mechanical systems (MEMS)-based EHs are preferable. Within this scenario the multimodal solution is the more suitable considering the technological constraints imposed by the micromachining manufacturing process. In this paper, we describe the optimization of a given multimodal mechanical geometry in order to maximize the number of resonances within a certain frequency band. The proposed optimization is finite element method (FEM)-based and it uses modal and harmonic simulations for both selecting the useful modes and then designing the device in a way that presents those modes within a predefined frequency range. This mechanical optimization is the first step for maximizing the output power of a multimodal piezoelectric energy harvester. The second step focuses on the optimization of the piezoelectric transducer geometry targeting the resonant modes defined in the first step. The optimization procedure is applied to an array of cantilever used as a case study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adams SG, Bertscht FM, Shawt KA, Hartwell PG, MacDonald NC, Moon FC (1995) Capacitance based tunable micromechanical resonators. In: The 8th international conference on solid-state sensors and actuators, and eurosensors IX, pp 438–441. doi:10.1088/0960-1317/8/1/003 Adams SG, Bertscht FM, Shawt KA, Hartwell PG, MacDonald NC, Moon FC (1995) Capacitance based tunable micromechanical resonators. In: The 8th international conference on solid-state sensors and actuators, and eurosensors IX, pp 438–441. doi:10.​1088/​0960-1317/​8/​1/​003
Zurück zum Zitat Dini M, Romani A, Filippi M, Bottarel V, Ricotti G, Tartagni M (2015) A nanocurrent power management ic for multiple heterogeneous energy harvesting sources. IEEE Trans Power Electron 30:5665–5680. doi:10.1109/TPEL.2014.2379622 CrossRef Dini M, Romani A, Filippi M, Bottarel V, Ricotti G, Tartagni M (2015) A nanocurrent power management ic for multiple heterogeneous energy harvesting sources. IEEE Trans Power Electron 30:5665–5680. doi:10.​1109/​TPEL.​2014.​2379622 CrossRef
Zurück zum Zitat Galchev T, Kim H, Najafi K (2009) A parametric frequency increased power generator for scavenging low frequency ambient vibrations. Eurosensors XXIII Conference Procedia Chemestry 1:1439–1442. doi:10.1016/j.proche.2009.07.359 Galchev T, Kim H, Najafi K (2009) A parametric frequency increased power generator for scavenging low frequency ambient vibrations. Eurosensors XXIII Conference Procedia Chemestry 1:1439–1442. doi:10.​1016/​j.​proche.​2009.​07.​359
Zurück zum Zitat Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Microsyst Technol 20:627–640. doi:10.1007/s00542-013-1998-2 CrossRef Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Microsyst Technol 20:627–640. doi:10.​1007/​s00542-013-1998-2 CrossRef
Zurück zum Zitat Mitcheson P, Kabey N, Miao P, Yeatman E, Homes A, Green T (2003) Analysis and optimization of MEMS on-chip power supply of slow moving sensors. Eurosensors 03:48–51 Mitcheson P, Kabey N, Miao P, Yeatman E, Homes A, Green T (2003) Analysis and optimization of MEMS on-chip power supply of slow moving sensors. Eurosensors 03:48–51
Zurück zum Zitat Priya S, Inman DJ (eds) (2009) Energy harvesting technologies. Springer, New York Priya S, Inman DJ (eds) (2009) Energy harvesting technologies. Springer, New York
Zurück zum Zitat Sordo G, Iannacci J, Serra E, Bonaldi M, Borrielli AL, Schneider M, Schmid U (2015) Study on the performance of tailored spring elements for piezoelectric MEMS energy harvesters. In: AISEM annual conference, 2015 XVIII, pp 1–4. doi: 10.1109/AISEM.2015.7066779 Sordo G, Iannacci J, Serra E, Bonaldi M, Borrielli AL, Schneider M, Schmid U (2015) Study on the performance of tailored spring elements for piezoelectric MEMS energy harvesters. In: AISEM annual conference, 2015 XVIII, pp 1–4. doi: 10.​1109/​AISEM.​2015.​7066779
Zurück zum Zitat Taylor GW, Burns JR, Kammann SA, Powers WB, Welsh TR (2001) The EneoPTIMIrgy Harvesting Eel: a small subsurface ocean/river power generator. IEEE J Oceanic Eng 26:539–547. doi:10.1109/48.972090 CrossRef Taylor GW, Burns JR, Kammann SA, Powers WB, Welsh TR (2001) The EneoPTIMIrgy Harvesting Eel: a small subsurface ocean/river power generator. IEEE J Oceanic Eng 26:539–547. doi:10.​1109/​48.​972090 CrossRef
Zurück zum Zitat Xue H, Hu Y, Wang QM (2008) Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 55:2104–2108. doi:10.1109/TUFFC.903 CrossRef Xue H, Hu Y, Wang QM (2008) Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 55:2104–2108. doi:10.​1109/​TUFFC.​903 CrossRef
Metadaten
Titel
Optimization method for designing multimodal piezoelectric MEMS energy harvesters
verfasst von
G. Sordo
E. Serra
U. Schmid
J. Iannacci
Publikationsdatum
08.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-2848-9

Weitere Artikel der Ausgabe 7/2016

Microsystem Technologies 7/2016 Zur Ausgabe

Neuer Inhalt