Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2018

30.08.2017 | Original Article

Optimization of endoglucanase production from Trichoderma harzianum strain HZN11 by central composite design under response surface methodology

verfasst von: Zabin K. Bagewadi, Sikandar I. Mulla, Harichandra Z. Ninnekar

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The utilization of abundantly available lignocellulosic biomass requires an efficient cellulolytic enzyme system. Evaluation of an efficient microbial system is a crucial part for the development of useful enzyme production in an industrial process. The present study reports the production of cellulolytic enzymes from various lignocellulosic biomasses by Trichoderma harzianum strain HZN11 characterized by 18S rDNA sequencing. The organism revealed a well-balanced cellulolytic complex of enzyme production (endoglucanase 30.32 U g−1, exoglucanase 15.08 U g−1, FPase 5.56 U g−1, cellobiase 17.92 U g−1, β-glucosidase 11.21 U g−1, and xylanase 1740 U g−1) from sweet sorghum bagasse under solid-state fermentation. Statistical optimization by Plackett–Burman design constituting of 12 experimental runs at two levels of seven independent variables revealed the significant effect of four variables, namely, protease peptone, lactose, MgSO4·7H2O, and K2HPO4 on endoglucanase production at 95% confidence level with R 2=97.68%. Response surface methodology using central composite design was employed with 31 experimental runs at 5 levels with 4 significant independent variables. The responses in the form of contour and 3D plots showed significant interaction effects. Significant interactions existed between the variables at p < 0.05 with R 2=97.3%. The model generated through these designs was validated giving a 2.31-fold increase in endoglucanase production. The isolated T. harzianum strain HZN11 produced an efficient pool of cellulolytic enzymes which is essential for efficient hydrolysis of biomass. The strain HZN11 also possessed a significant capability of cellobiase production which is usually deficient in other strains. Higher yields of endoglucanase could be employed for bioethanol production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wei H, Xu Q, Taylor LE 2nd, Baker JO, Tucker MP, Ding SY (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20:330–338CrossRef Wei H, Xu Q, Taylor LE 2nd, Baker JO, Tucker MP, Ding SY (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20:330–338CrossRef
2.
Zurück zum Zitat Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 4:8271–8277CrossRef Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 4:8271–8277CrossRef
3.
Zurück zum Zitat Chohnan S, Nakane M, Rahman MH, Nitta Y, Yoshiura T, Ohta H, Kurusu Y (2011) Fuel ethanol production from sweet sorghum using repeated-batch fermentation. J Biosci Bioeng 111:433–436CrossRef Chohnan S, Nakane M, Rahman MH, Nitta Y, Yoshiura T, Ohta H, Kurusu Y (2011) Fuel ethanol production from sweet sorghum using repeated-batch fermentation. J Biosci Bioeng 111:433–436CrossRef
4.
Zurück zum Zitat Ratnavathi C, Chakravarthy S, Komala V, Chavan U, Patil J (2011) Sweet sorghum as feedstock for biofuel production: a review. Sugar Tech 13:399–407CrossRef Ratnavathi C, Chakravarthy S, Komala V, Chavan U, Patil J (2011) Sweet sorghum as feedstock for biofuel production: a review. Sugar Tech 13:399–407CrossRef
5.
Zurück zum Zitat Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696CrossRef Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696CrossRef
6.
Zurück zum Zitat Zhang JH, Siika-aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 18:12CrossRef Zhang JH, Siika-aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 18:12CrossRef
7.
Zurück zum Zitat de Castro AM, Pedro KC, da Cruz JC, Ferreira MC, Leite SG, Pereira N Jr (2010) Trichoderma harzianum IOC-4038: a promising strain for the production of a cellulolytic complex with significant beta-glucosidase activity from sugarcane bagasse cellulignin. Appl Biochem Biotechnol 162:2111–2122CrossRef de Castro AM, Pedro KC, da Cruz JC, Ferreira MC, Leite SG, Pereira N Jr (2010) Trichoderma harzianum IOC-4038: a promising strain for the production of a cellulolytic complex with significant beta-glucosidase activity from sugarcane bagasse cellulignin. Appl Biochem Biotechnol 162:2111–2122CrossRef
8.
Zurück zum Zitat Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2006) Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Appl Biochem Biotechnol 129-132:795–807CrossRef Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2006) Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Appl Biochem Biotechnol 129-132:795–807CrossRef
10.
Zurück zum Zitat El-Hadi AA, El-Nour SA, Hammad A, Kamel Z, Anwar M (2014) Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. J Radiat Res Appl Sci 7:23–28CrossRef El-Hadi AA, El-Nour SA, Hammad A, Kamel Z, Anwar M (2014) Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. J Radiat Res Appl Sci 7:23–28CrossRef
11.
Zurück zum Zitat Trivedi S, Divecha J, Shah A (2012) Optimization of inulinase production by a newly isolated Aspergillus tubingensis CR16 using low cost substrates. Carbohydr Polym 90:483–490CrossRef Trivedi S, Divecha J, Shah A (2012) Optimization of inulinase production by a newly isolated Aspergillus tubingensis CR16 using low cost substrates. Carbohydr Polym 90:483–490CrossRef
12.
Zurück zum Zitat Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977CrossRef Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977CrossRef
13.
Zurück zum Zitat Zambare V, Christopher L (2011) Statistical analysis of cellulase production in Bacillus amyloliquefaciens UNPDV-22. Extreme Life, Biospeol Astrobiol 3:38–45 Zambare V, Christopher L (2011) Statistical analysis of cellulase production in Bacillus amyloliquefaciens UNPDV-22. Extreme Life, Biospeol Astrobiol 3:38–45
14.
Zurück zum Zitat Szijártó N, Szengyel Z, Lidén G, Réczey K (2004) Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl Biochem Biotechnol 113:115–124CrossRef Szijártó N, Szengyel Z, Lidén G, Réczey K (2004) Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl Biochem Biotechnol 113:115–124CrossRef
15.
Zurück zum Zitat Robl D, da Silva DP, Mergel CM, Rojas JD, dos Santos CP, Pimentel IC, Vicente VA, da Cruz PJG, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94CrossRef Robl D, da Silva DP, Mergel CM, Rojas JD, dos Santos CP, Pimentel IC, Vicente VA, da Cruz PJG, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94CrossRef
16.
Zurück zum Zitat Bagewadi ZK, Mulla SI, Shouche Y, Ninnekar HZ (2016) Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech 6:164CrossRef Bagewadi ZK, Mulla SI, Shouche Y, Ninnekar HZ (2016) Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech 6:164CrossRef
17.
Zurück zum Zitat Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the central Indian Basin by culture-independent approach. Microb Ecol 61:507–517CrossRef Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the central Indian Basin by culture-independent approach. Microb Ecol 61:507–517CrossRef
18.
Zurück zum Zitat Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRef Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRef
19.
Zurück zum Zitat Bagewadi Z, Mulla S, Ninnekar H (2016) Purification and characterization of endo β-1,4-d-glucanase from Trichoderma harzianum strain HZN11 and its application in production of bioethanol from sweet sorghum bagasse. 3 Biotech 6:101CrossRef Bagewadi Z, Mulla S, Ninnekar H (2016) Purification and characterization of endo β-1,4-d-glucanase from Trichoderma harzianum strain HZN11 and its application in production of bioethanol from sweet sorghum bagasse. 3 Biotech 6:101CrossRef
20.
Zurück zum Zitat Eveleigh DE, Mandels M, Andreotti R, Roche C (2009) Measurement of saccharifying cellulase. Biotechnol Biofuels 2:21CrossRef Eveleigh DE, Mandels M, Andreotti R, Roche C (2009) Measurement of saccharifying cellulase. Biotechnol Biofuels 2:21CrossRef
21.
Zurück zum Zitat Kaur J, Chadha BS, Kumar BA, Kaur GS, Saini HS (2007) Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electron J Biotechnol 10:260–270CrossRef Kaur J, Chadha BS, Kumar BA, Kaur GS, Saini HS (2007) Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electron J Biotechnol 10:260–270CrossRef
22.
Zurück zum Zitat Bagewadi ZK, Mulla SI, Ninnekar HZ (2016) Purification, characterization, gene cloning and expression of GH-10 xylanase (Penicillium citrinum isolate HZN13). 3 Biotech 6:169CrossRef Bagewadi ZK, Mulla SI, Ninnekar HZ (2016) Purification, characterization, gene cloning and expression of GH-10 xylanase (Penicillium citrinum isolate HZN13). 3 Biotech 6:169CrossRef
23.
Zurück zum Zitat Rajendran A, Thirugnanam M, Thangavelu V (2007) Statistical evaluation of medium components by Plackett-Burman experimental design and kinetic modeling of lipase production by Pseudomonas fluorescens. Indian J Biotechnol 6:469–478 Rajendran A, Thirugnanam M, Thangavelu V (2007) Statistical evaluation of medium components by Plackett-Burman experimental design and kinetic modeling of lipase production by Pseudomonas fluorescens. Indian J Biotechnol 6:469–478
24.
Zurück zum Zitat Peciulytė D (2007) Isolation of cellulolytic fungi from waste paper gradual recycling materials. Ekologija 53:11–18 Peciulytė D (2007) Isolation of cellulolytic fungi from waste paper gradual recycling materials. Ekologija 53:11–18
25.
Zurück zum Zitat Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 6:1858–1867CrossRef Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 6:1858–1867CrossRef
26.
Zurück zum Zitat Aro N, Saloheimo A, Ilmén M, Penttilä M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314CrossRef Aro N, Saloheimo A, Ilmén M, Penttilä M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314CrossRef
27.
Zurück zum Zitat Pandit NP, Maheshwari SK (2012) Optimization of cellulase enzyme production from sugarcane Pressmud using oyster mushroom—Pleurotus sajor-caju by solid state fermentation. J Bioremed Biodegrad 3:3CrossRef Pandit NP, Maheshwari SK (2012) Optimization of cellulase enzyme production from sugarcane Pressmud using oyster mushroom—Pleurotus sajor-caju by solid state fermentation. J Bioremed Biodegrad 3:3CrossRef
28.
Zurück zum Zitat Pathak P, Bhardwaj NK, Singh AK (2014) Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Appl Biochem Biotechnol 172:3776–3797CrossRef Pathak P, Bhardwaj NK, Singh AK (2014) Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Appl Biochem Biotechnol 172:3776–3797CrossRef
29.
Zurück zum Zitat Lee H, Lee YM, Heo YM, Hong JH, Jang S, Ahn BJ, Lee SS, Kim JJ (2017) Optimization of fungal enzyme production by Trichoderma harzianum KUC1716 through surfactant-induced morphological changes. Mycobiology 45:48–51CrossRef Lee H, Lee YM, Heo YM, Hong JH, Jang S, Ahn BJ, Lee SS, Kim JJ (2017) Optimization of fungal enzyme production by Trichoderma harzianum KUC1716 through surfactant-induced morphological changes. Mycobiology 45:48–51CrossRef
30.
Zurück zum Zitat Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid-state fermentation in biotechnology-fundamentals and applications. Asiatech Publishers, Inc, New Delhi, pp 100–221 Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid-state fermentation in biotechnology-fundamentals and applications. Asiatech Publishers, Inc, New Delhi, pp 100–221
31.
Zurück zum Zitat Li Q, Ng WT, Wu JC (2014) Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb Cell Factories 13:157CrossRef Li Q, Ng WT, Wu JC (2014) Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb Cell Factories 13:157CrossRef
32.
Zurück zum Zitat Fadel M (2001) High-level xylanase production from sorghum flour by a newly isolate of Trichoderma harzianum cultivated under solid state fermentation. Ann Microbiol 51:61–78 Fadel M (2001) High-level xylanase production from sorghum flour by a newly isolate of Trichoderma harzianum cultivated under solid state fermentation. Ann Microbiol 51:61–78
33.
Zurück zum Zitat Chakraborty S, Gupta R, Jain KK, Kuhad RC (2016) Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Bioprocess Biosyst Eng 39:1659–1670CrossRef Chakraborty S, Gupta R, Jain KK, Kuhad RC (2016) Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Bioprocess Biosyst Eng 39:1659–1670CrossRef
34.
Zurück zum Zitat Nava-Cruz NY, Contreras-Esquivel JC, Aguilar-González MA, Nuncio A, Rodríguez-Herrera R, Aguilar CN (2016) Agave atrovirens fibers as substrate and support for solid-state fermentation for cellulase production by Trichoderma asperellum. 3 Biotech 6:115CrossRef Nava-Cruz NY, Contreras-Esquivel JC, Aguilar-González MA, Nuncio A, Rodríguez-Herrera R, Aguilar CN (2016) Agave atrovirens fibers as substrate and support for solid-state fermentation for cellulase production by Trichoderma asperellum. 3 Biotech 6:115CrossRef
35.
Zurück zum Zitat Dutt D, Kumar A (2014) Optimization of cellulase production under solid-state fermentation by Aspergillus flavus (AT-2) and Aspergillus niger (AT-3) and its impact on stickers and ink particle size of sorted office paper. Cell Chem Technol 48(3–4):285–298 Dutt D, Kumar A (2014) Optimization of cellulase production under solid-state fermentation by Aspergillus flavus (AT-2) and Aspergillus niger (AT-3) and its impact on stickers and ink particle size of sorted office paper. Cell Chem Technol 48(3–4):285–298
36.
Zurück zum Zitat Benoliel B, Torres FAG, Pepe de Moraes LM (2013) A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. SpringerPlus 2:656CrossRef Benoliel B, Torres FAG, Pepe de Moraes LM (2013) A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. SpringerPlus 2:656CrossRef
37.
Zurück zum Zitat Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, Kasumi T (2017) Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol 233:67–73CrossRef Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, Kasumi T (2017) Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol 233:67–73CrossRef
38.
Zurück zum Zitat Ellila S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M (2017) Development of a low-cost cellulose production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:30CrossRef Ellila S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M (2017) Development of a low-cost cellulose production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:30CrossRef
39.
Zurück zum Zitat Delabona PS, Lima DJ, Robl D, Rabelo SC, Farinas S, Pradella JG (2016) Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol 43:617–626CrossRef Delabona PS, Lima DJ, Robl D, Rabelo SC, Farinas S, Pradella JG (2016) Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol 43:617–626CrossRef
40.
Zurück zum Zitat Libard N, Soccol CR, Góes-Neto A, Oliveira J, Vandenberghe LP (2017) Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochem 57:190–199CrossRef Libard N, Soccol CR, Góes-Neto A, Oliveira J, Vandenberghe LP (2017) Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochem 57:190–199CrossRef
41.
Zurück zum Zitat Sohail M, Ahmad A, Khan SA (2016) Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates. 3 Biotech 6:103CrossRef Sohail M, Ahmad A, Khan SA (2016) Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates. 3 Biotech 6:103CrossRef
42.
Zurück zum Zitat Sanchez-Herrera LM, Ramos-Valdivia AC, de la Torre M, Salgado LM, Ponce-Noyola T (2007) Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources. Appl Microbiol Biotechnol 77:589–595CrossRef Sanchez-Herrera LM, Ramos-Valdivia AC, de la Torre M, Salgado LM, Ponce-Noyola T (2007) Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources. Appl Microbiol Biotechnol 77:589–595CrossRef
43.
Zurück zum Zitat Pachauri P, Sullia SB, Deshmukh S (2016) Statistical optimization for enhanced production of cellulase from sugarcane bagasse using response surface methodology. J Sci Ind Res 75:181–187 Pachauri P, Sullia SB, Deshmukh S (2016) Statistical optimization for enhanced production of cellulase from sugarcane bagasse using response surface methodology. J Sci Ind Res 75:181–187
44.
Zurück zum Zitat Patel H, Chapla D, Divecha J, Shah A (2015) Improved yield of α-l-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioprocess 2:11CrossRef Patel H, Chapla D, Divecha J, Shah A (2015) Improved yield of α-l-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioprocess 2:11CrossRef
45.
Zurück zum Zitat Pirzadah T, Garg S, Singh J, Vyas A, Kumar M, Gaur N, Bala M, Rehman R, Varma A, Kumar V (2014) Characterization of Actinomycetes and Trichoderma spp. for cellulase production utilizing crude substrates by response surface methodology. SpringerPlus 3:622CrossRef Pirzadah T, Garg S, Singh J, Vyas A, Kumar M, Gaur N, Bala M, Rehman R, Varma A, Kumar V (2014) Characterization of Actinomycetes and Trichoderma spp. for cellulase production utilizing crude substrates by response surface methodology. SpringerPlus 3:622CrossRef
46.
Zurück zum Zitat Callow NV, Ray CS, Kelbly MA, Ju LK (2016) Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzym Microb Technol 82:8–14CrossRef Callow NV, Ray CS, Kelbly MA, Ju LK (2016) Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzym Microb Technol 82:8–14CrossRef
47.
Zurück zum Zitat Jampala P, Tadikamalla S, Preethi M, Ramanujam S, Uppuluri KB (2017) Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 7:14CrossRef Jampala P, Tadikamalla S, Preethi M, Ramanujam S, Uppuluri KB (2017) Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 7:14CrossRef
48.
Zurück zum Zitat Kundu A, Karmakar M, Ray RR (2012) Simultaneous production of animal feed enzymes (endoxylanase and endoglucanase) by Penicillium janthinellum from waste jute caddies. Int J Recycl Org Waste Agricult 1:13CrossRef Kundu A, Karmakar M, Ray RR (2012) Simultaneous production of animal feed enzymes (endoxylanase and endoglucanase) by Penicillium janthinellum from waste jute caddies. Int J Recycl Org Waste Agricult 1:13CrossRef
Metadaten
Titel
Optimization of endoglucanase production from Trichoderma harzianum strain HZN11 by central composite design under response surface methodology
verfasst von
Zabin K. Bagewadi
Sikandar I. Mulla
Harichandra Z. Ninnekar
Publikationsdatum
30.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2018
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0285-3

Weitere Artikel der Ausgabe 2/2018

Biomass Conversion and Biorefinery 2/2018 Zur Ausgabe