Optimization of Gravity Concrete Dams Using the Grasshopper Algorithm (Case Study: Koyna Dam) | springerprofessional.de Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Geotechnical and Geological Engineering 11/2022

04.07.2022 | Original Paper

Optimization of Gravity Concrete Dams Using the Grasshopper Algorithm (Case Study: Koyna Dam)

verfasst von: Mehran Seifollahi, Salim Abbasi, John Abraham, Reza Norouzi, Rasoul Daneshfaraz, Mohammad-Ali Lotfollahi-Yaghin, Ahmet Alkan

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The aim of this study is to optimize the geometric dimensions of the Koyna concrete weight dam with and without seismic forces using the grasshopper optimizer algorithm (GOA). In the methodology section of this paper, the geometric parameters of the dam are provided as input data to an objective function minimizing the geometric dimensions and concreting volume of the dam body. The present results show that the best model for optimization with the grasshopper algorithm for situations without the effects of seismic forces has a 13.7% reduction in a concrete volume equivalent to 498 cubic meters. The results of the grasshopper algorithm were compared with the results of the particle swarm optimizer (PSO), Gray wolf optimizer (GWO), and LINGO11 algorithms. A comparison of the optimized volume of concrete shows that with the PSO method, volume reductions were: 378 cubic meters 10.4% with the GWO method, 431 cubic meters 11.86% with the LINGO11 process, 82 cubic meters 2.25% with the GOA method, 498 cubic meters 13.7%. The best optimization results were obtained with the effects of seismic forces with a 10.99% reduction in the volume of concrete equal to ~ 400 cubic meters. The results show the superiority of the optimization method of the grasshopper algorithm over other methods. The amount of concrete used in the Koyna dam is 3633 cubic meters, which in the optimized state with LINGO11 method 3551 cubic meters in GWO method 3255, in PSO method 3202, and in GOA method, 3138 cubic meters, which in general, the volume is optimized, respectively 82, 378, 431, and 495 cubic meters.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
Zurück zum Zitat Anon H (1976) Design of gravity dams. United States Department of the Interior Bureau of -Reclamation (USBR) A Water Resources Technical Press, Colorado Anon H (1976) Design of gravity dams. United States Department of the Interior Bureau of -Reclamation (USBR) A Water Resources Technical Press, Colorado
Zurück zum Zitat Carmen S, Popa R (2010) Application of honey-bees mating optimization algorithm to pumping station scheduling for water supply. Mech Eng 72(1):77–84 Carmen S, Popa R (2010) Application of honey-bees mating optimization algorithm to pumping station scheduling for water supply. Mech Eng 72(1):77–84
Zurück zum Zitat Chiti H, Khatibinia M, Akbarpour A, Naseri HR (2016) Reliability–based design optimization of concrete gravity dams using subset simulation. Int J Optim Civ Eng 6:329–348 Chiti H, Khatibinia M, Akbarpour A, Naseri HR (2016) Reliability–based design optimization of concrete gravity dams using subset simulation. Int J Optim Civ Eng 6:329–348
Zurück zum Zitat Daneshfaraz R, Bagherzadeh M, Esmaeeli R, Norouzi R, Abraham J (2021b) Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens. Water Supply 21(1):217–231 CrossRef Daneshfaraz R, Bagherzadeh M, Esmaeeli R, Norouzi R, Abraham J (2021b) Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens. Water Supply 21(1):217–231 CrossRef
Zurück zum Zitat Deepika R, Suribabu CR (2015) Optimal design of gravity dam using differential evolution algorithm. Iran Univ Sci Technol 5(3):255–266 Deepika R, Suribabu CR (2015) Optimal design of gravity dam using differential evolution algorithm. Iran Univ Sci Technol 5(3):255–266
Zurück zum Zitat Esat V, Hall MJ (1994) Water resources system optimization using genetic algorithms. In: Proceeding of the first international conference on hydroinformatics. Balkema. Rotterdam. 1, 225–231. Esat V, Hall MJ (1994) Water resources system optimization using genetic algorithms. In: Proceeding of the first international conference on hydroinformatics. Balkema. Rotterdam. 1, 225–231.
Zurück zum Zitat Ghodousi H, Oskouhi M (2015) Determination of optimal dimensions of concrete gravity dams using LINGO11 nonlinear modeling. J Civil Eng Urban 5(02):47–52 Ghodousi H, Oskouhi M (2015) Determination of optimal dimensions of concrete gravity dams using LINGO11 nonlinear modeling. J Civil Eng Urban 5(02):47–52
Zurück zum Zitat Hojjati A, Monadi M, Faridhosseini A, Mohammadi M (2018) Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. J Hydrol Hydromech 66(3):323–329 CrossRef Hojjati A, Monadi M, Faridhosseini A, Mohammadi M (2018) Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. J Hydrol Hydromech 66(3):323–329 CrossRef
Zurück zum Zitat Hosseiny SM, Rahmani AI, Derakhshan M, Fatahizadeh R (2021) An intrusion detection system: using a grasshopper algorithm. Hosseiny SM, Rahmani AI, Derakhshan M, Fatahizadeh R (2021) An intrusion detection system: using a grasshopper algorithm.
Zurück zum Zitat Iraji H, Mohammadi M, Shakouri B, Meshram SG (2020) Predicting reservoir volume reduction using artificial neural network. Arab J Geosci 13(17):1–13 CrossRef Iraji H, Mohammadi M, Shakouri B, Meshram SG (2020) Predicting reservoir volume reduction using artificial neural network. Arab J Geosci 13(17):1–13 CrossRef
Zurück zum Zitat Karami H, Rezaei Ahvanooei A (2021) Estimating discharge coefficient of curved piano key overflows using combination of support vector regression and Grasshopper and Firefly algorithms. Irrig Water Eng 12(2):186–202 Karami H, Rezaei Ahvanooei A (2021) Estimating discharge coefficient of curved piano key overflows using combination of support vector regression and Grasshopper and Firefly algorithms. Irrig Water Eng 12(2):186–202
Zurück zum Zitat Kaveh A, Zakian P (2015) Stability based optimum design of concrete gravity dam using CSS, CBO and ECBO algorithms. Iran Univ Sci Technol 5(4):419–431 Kaveh A, Zakian P (2015) Stability based optimum design of concrete gravity dam using CSS, CBO and ECBO algorithms. Iran Univ Sci Technol 5(4):419–431
Zurück zum Zitat Masoumi F, Salimi N, Zafari N (2020) Evaluation of Grasshopper optimization algorithm for optimal operation of surface water reservoirs with reliability constraints. Iran J Irrig Drain 14(2):579–592 Masoumi F, Salimi N, Zafari N (2020) Evaluation of Grasshopper optimization algorithm for optimal operation of surface water reservoirs with reliability constraints. Iran J Irrig Drain 14(2):579–592
Zurück zum Zitat Masoumi F, Esfandmaz S, Zafari N (2021) Investigate the applicability of gray Wolf optimization algorithm in determining the optimal dimensions of concrete dams. Dam Hydroelectr Powerplant 7(27):79–89 Masoumi F, Esfandmaz S, Zafari N (2021) Investigate the applicability of gray Wolf optimization algorithm in determining the optimal dimensions of concrete dams. Dam Hydroelectr Powerplant 7(27):79–89
Zurück zum Zitat Memarian T, Shahbazi Y (2017) Integrated metaheuristic differential evolution optimization algorithm and Pseudo static analysis of concrete gravity dam. Civil Eng J 3:617–625 CrossRef Memarian T, Shahbazi Y (2017) Integrated metaheuristic differential evolution optimization algorithm and Pseudo static analysis of concrete gravity dam. Civil Eng J 3:617–625 CrossRef
Zurück zum Zitat Norouzi R, Salmasi F, Arvanaghi H (2020) Uplift pressure and hydraulic gradient in Sabalan Dam. Appl Water Sci 10(5):1–12 CrossRef Norouzi R, Salmasi F, Arvanaghi H (2020) Uplift pressure and hydraulic gradient in Sabalan Dam. Appl Water Sci 10(5):1–12 CrossRef
Zurück zum Zitat Rampal A, Halder P, Manna B, Sharma KG (2020) Static and coupled hydro-mechanical analyses of concrete gravity dam resting on jointed rock foundation. Geotech Geol Eng 38:4111–4127 CrossRef Rampal A, Halder P, Manna B, Sharma KG (2020) Static and coupled hydro-mechanical analyses of concrete gravity dam resting on jointed rock foundation. Geotech Geol Eng 38:4111–4127 CrossRef
Zurück zum Zitat Salmasi F (2011) Design of gravity dam by genetic algorithms. Int J Civ Environ Eng 3:187–192 Salmasi F (2011) Design of gravity dam by genetic algorithms. Int J Civ Environ Eng 3:187–192
Zurück zum Zitat Seifollahi M, Abbasi S, Lotfollahi-yaghin MA, Daneshfaraz R, Kalateh F, Fahimi-Farzam M (2021b) Investigation of the performance of soft computing methods in estimating the crest settlement of rockfill dam with the central core. JWSS - J Water Soil Sci. (Accepted to online publish). Seifollahi M, Abbasi S, Lotfollahi-yaghin MA, Daneshfaraz R, Kalateh F, Fahimi-Farzam M (2021b) Investigation of the performance of soft computing methods in estimating the crest settlement of rockfill dam with the central core. JWSS - J Water Soil Sci. (Accepted to online publish).
Zurück zum Zitat Seifollahi M, Abbasi S, Kalateh F (2021c) Prediction of settlement caused by earth dam crest earthquake using hybrid model of wavelet and artificial neural network. In: 12th International Congress on Civil Engineering Conference Ferdowsi University of Mashhad, 12–14 July 2021c, Mashhad, Iran. Seifollahi M, Abbasi S, Kalateh F (2021c) Prediction of settlement caused by earth dam crest earthquake using hybrid model of wavelet and artificial neural network. In: 12th International Congress on Civil Engineering Conference Ferdowsi University of Mashhad, 12–14 July 2021c, Mashhad, Iran.
Zurück zum Zitat Shakouri B, Mohammadi M (2020) Evaluation of penetration depth for cutoff walls in the core of earth dams. J Geotech Geol Eng 38(1):151–167 CrossRef Shakouri B, Mohammadi M (2020) Evaluation of penetration depth for cutoff walls in the core of earth dams. J Geotech Geol Eng 38(1):151–167 CrossRef
Metadaten
Titel
Optimization of Gravity Concrete Dams Using the Grasshopper Algorithm (Case Study: Koyna Dam)
verfasst von
Mehran Seifollahi
Salim Abbasi
John Abraham
Reza Norouzi
Rasoul Daneshfaraz
Mohammad-Ali Lotfollahi-Yaghin
Ahmet Alkan
Publikationsdatum
04.07.2022
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 11/2022
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-022-02227-1

Weitere Artikel der Ausgabe 11/2022

Geotechnical and Geological Engineering 11/2022 Zur Ausgabe