Skip to main content

2018 | OriginalPaper | Buchkapitel

15. Optimization of Multi-target Tracking Within a Sensor Network Via Information Guided Clustering

verfasst von : Alexander A. Soderlund, Mrinal Kumar

Erschienen in: Handbook of Dynamic Data Driven Applications Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a new algorithm for rapid and efficient clustering of sensing nodes within a heterogeneous wireless sensor network. The objective is to enable optimal sensor allocation for localization uncertainty reduction in multi-target tracking. The proposed algorithm is built on three metrics: (i) sensing feasibility; (ii) measurement quality to maximize information utility; and, (iii) communication cost to minimize data routing time. The derived cluster is employed as the search-space for optimal sensor allocation via maximizing the uncertainty reduction of the expected probability distribution over a target’s state-space. Theoretical analysis is used to show advantage of the proposed method in terms of information utility over the widely used Euclidean distance based clustering approach. The analysis is verified via simulated target tracking examples, in terms of metrics of information utility and computational expenditure. Simulations also reveal relationships between sensor field density and the extent of information gain over competing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The use of the term differs throughout the literature. In this study, “clustering” only pertains the act of reducing the set of potential nodes for further sensor selection.
 
2
“ECA” is used as an umbrella term for clustering procedures that prioritize chosen sensors’ proximity to predicted target positions. Obviously, not all proximity-based methods are identical and vary depending on the application.
 
3
For simplicity, the error term r 0 is a positive constant, r 0 << d.
 
4
This study utilizes an exhaustive search to locate a single optimal sensor, as opposed to a conventional graph neuron set.
 
Literatur
1.
Zurück zum Zitat J.L. Crassidis, J.L. Junkins, Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC Applied Mathematics & Nonlinear Science, 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2011) J.L. Crassidis, J.L. Junkins, Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC Applied Mathematics & Nonlinear Science, 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2011)
2.
Zurück zum Zitat J. Liu, J. Reich, F. Zhao, Collaborative in-network processing for target tracking. EURASIP J. Appl. Signal Process. 4, 378–391 (2003). 616720CrossRef J. Liu, J. Reich, F. Zhao, Collaborative in-network processing for target tracking. EURASIP J. Appl. Signal Process. 4, 378–391 (2003). 616720CrossRef
3.
Zurück zum Zitat M.L. Hernandez, T. Kirubarajan, Y. Bar-Shalom, Multisensor resource deployment using posterior Cramer-Rao bounds. IEEE Trans. Aerosp. Electron. Syst. 40, 399–416 (2004)CrossRef M.L. Hernandez, T. Kirubarajan, Y. Bar-Shalom, Multisensor resource deployment using posterior Cramer-Rao bounds. IEEE Trans. Aerosp. Electron. Syst. 40, 399–416 (2004)CrossRef
4.
Zurück zum Zitat P.V. Pahalawatta, D. Depalov, T.N. Pappas, A.K. Katsaggelos, Detection, classification, and collaborative tracking of multiple targets using video sensors, in Information Processing in Sensor Networks (Springer, Berlin, 2003), pp. 529–544MATH P.V. Pahalawatta, D. Depalov, T.N. Pappas, A.K. Katsaggelos, Detection, classification, and collaborative tracking of multiple targets using video sensors, in Information Processing in Sensor Networks (Springer, Berlin, 2003), pp. 529–544MATH
5.
Zurück zum Zitat K. Chakrabarty, Y. Zou, Sensor deployment and target localization based on virtual forces, in Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, San Francisco, 2003, pp. 71–75 K. Chakrabarty, Y. Zou, Sensor deployment and target localization based on virtual forces, in Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, San Francisco, 2003, pp. 71–75
6.
Zurück zum Zitat M. Hernandez R. Tharmarasa, T. Kirubarajan, Large-scale optimal sensor array management for multitarget tracking. IEEE Trans. Syst. Man Cybern. 37(5), 803–814 (2007)CrossRef M. Hernandez R. Tharmarasa, T. Kirubarajan, Large-scale optimal sensor array management for multitarget tracking. IEEE Trans. Syst. Man Cybern. 37(5), 803–814 (2007)CrossRef
7.
Zurück zum Zitat X. Shen, S. Liu, P.K. Varshney, Sensor selection for nonlinear systems in large sensor networks. IEEE Trans. Aeros. Electron. Syst. 50(4), 2664–2678 (2014)CrossRef X. Shen, S. Liu, P.K. Varshney, Sensor selection for nonlinear systems in large sensor networks. IEEE Trans. Aeros. Electron. Syst. 50(4), 2664–2678 (2014)CrossRef
8.
Zurück zum Zitat T. Wang, Z. Peng, J. Liang, S. Wen, M.Z.A. Bhuiyan, Y. Cai, J. Cao, Following targets for mobile tracking in wireless sensor networks. ACM Trans. Sensor Netwo. (TOSN) 12(4), 31 (2016) T. Wang, Z. Peng, J. Liang, S. Wen, M.Z.A. Bhuiyan, Y. Cai, J. Cao, Following targets for mobile tracking in wireless sensor networks. ACM Trans. Sensor Netwo. (TOSN) 12(4), 31 (2016)
9.
Zurück zum Zitat F.M. Dommermuth, The estimation of target motion parameters from CPA time measurements in a field of acoustic sensors. J. Acoust. Soc. Am. 83(4), 1476–1480 (1988)CrossRef F.M. Dommermuth, The estimation of target motion parameters from CPA time measurements in a field of acoustic sensors. J. Acoust. Soc. Am. 83(4), 1476–1480 (1988)CrossRef
10.
Zurück zum Zitat Q. Yang, A. Lim, K. Casey, R. Neelisti, Real-time target tracking with CPA algorithm in wireless sensor networks, in 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Francisco, 2008, pp. 305–312 Q. Yang, A. Lim, K. Casey, R. Neelisti, Real-time target tracking with CPA algorithm in wireless sensor networks, in 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Francisco, 2008, pp. 305–312
11.
Zurück zum Zitat T. Ahmed O. Demigha, W. Hidouci, On energy efficiency in collaborative target tracking in wireless sensor network: a review. IEEE Commun. Surv. Tutorials 15(3), 1210–1222 (2013)CrossRef T. Ahmed O. Demigha, W. Hidouci, On energy efficiency in collaborative target tracking in wireless sensor network: a review. IEEE Commun. Surv. Tutorials 15(3), 1210–1222 (2013)CrossRef
12.
Zurück zum Zitat A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, J. Zhao, Habitat monitoring: application driver for wireless communications technology. SIGCOMM Comput. Commun. Rev. 31(2 supplement), 20–41 (2001)CrossRef A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, J. Zhao, Habitat monitoring: application driver for wireless communications technology. SIGCOMM Comput. Commun. Rev. 31(2 supplement), 20–41 (2001)CrossRef
13.
Zurück zum Zitat A. Farina, G. Golino, A. Capponi, C. Pilotto, Surveillance by means of a random sensor network: a heterogeneous sensor approach, in 2005 7th International Conference on Information Fusion, Philadelphia, ed. by E. Blasch, vol. 2, 2005 A. Farina, G. Golino, A. Capponi, C. Pilotto, Surveillance by means of a random sensor network: a heterogeneous sensor approach, in 2005 7th International Conference on Information Fusion, Philadelphia, ed. by E. Blasch, vol. 2, 2005
14.
Zurück zum Zitat J. Lin, W. Xiao, F. L. Lewis, L. Xie, Energy-efficient distributed adaptive multisensor scheduling for target tracking in wireless sensor networks. IEEE Trans. Instrum. Meas. 58(6), 1886–1896 (2009)CrossRef J. Lin, W. Xiao, F. L. Lewis, L. Xie, Energy-efficient distributed adaptive multisensor scheduling for target tracking in wireless sensor networks. IEEE Trans. Instrum. Meas. 58(6), 1886–1896 (2009)CrossRef
15.
Zurück zum Zitat B. Sikdar, H. Yang, A protocol for tracking mobile targets using sensor networks, in IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, 2003, pp. 73–77 B. Sikdar, H. Yang, A protocol for tracking mobile targets using sensor networks, in IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, 2003, pp. 73–77
16.
Zurück zum Zitat Z. Wang, W. Lou, Z. Wang, J. Ma, H. Chen, A novel mobility management scheme for target tracking in cluster-based sensor networks, in International Conference on Distributed Computing in Sensor Systems (Springer, Santa Barbara, 2010), pp. 172–186 Z. Wang, W. Lou, Z. Wang, J. Ma, H. Chen, A novel mobility management scheme for target tracking in cluster-based sensor networks, in International Conference on Distributed Computing in Sensor Systems (Springer, Santa Barbara, 2010), pp. 172–186
17.
Zurück zum Zitat J. Reich F. Zhao, J. Shin, Information-driven dynamic sensor collaboration. IEEE Signal Process. Mag. 19, 61–72 (2002)CrossRef J. Reich F. Zhao, J. Shin, Information-driven dynamic sensor collaboration. IEEE Signal Process. Mag. 19, 61–72 (2002)CrossRef
18.
Zurück zum Zitat Y. Zhang J. Qian, X. Jin, Energy-efficient node selection for acoustic source localization in wireless sensor network, in 6th International Conference on Wireless Communications Networking and Mobile Computing, Shenzhen, 2010, pp. 1–5 Y. Zhang J. Qian, X. Jin, Energy-efficient node selection for acoustic source localization in wireless sensor network, in 6th International Conference on Wireless Communications Networking and Mobile Computing, Shenzhen, 2010, pp. 1–5
19.
Zurück zum Zitat L.M. Kaplan, Global node selection for localization in a distributed sensor network. IEEE Trans. Aerosp. Electron. Syst. 42(1), 113–135 (2006)CrossRef L.M. Kaplan, Global node selection for localization in a distributed sensor network. IEEE Trans. Aerosp. Electron. Syst. 42(1), 113–135 (2006)CrossRef
20.
Zurück zum Zitat A. Capponi, C. Pilotto, G. Golino, A. Farina, L. Kaplan, Algorithms for the selection of the active sensors in distributed tracking: comparison between frisbee and GNS methods, in 9th International Conference on Information Fusion, Florence, 2006, pp. 1–8 A. Capponi, C. Pilotto, G. Golino, A. Farina, L. Kaplan, Algorithms for the selection of the active sensors in distributed tracking: comparison between frisbee and GNS methods, in 9th International Conference on Information Fusion, Florence, 2006, pp. 1–8
21.
Zurück zum Zitat D. Estrin C. Intanagonwiwat, R. Govinda, Directed diffusion: a scalable and robust communication paradigm for sensor networks, in 6th Annual International Conference on Mobile Computing and Networking, San Diego, 2003, pp. 56–67 D. Estrin C. Intanagonwiwat, R. Govinda, Directed diffusion: a scalable and robust communication paradigm for sensor networks, in 6th Annual International Conference on Mobile Computing and Networking, San Diego, 2003, pp. 56–67
22.
Zurück zum Zitat T. Yum X. Zhu, L. Shen, Hausdorff clustering and minimum energy routing for wireless sensor networks. IEEE Trans. Veh. Technol. 58(2), 990–997 (2009)CrossRef T. Yum X. Zhu, L. Shen, Hausdorff clustering and minimum energy routing for wireless sensor networks. IEEE Trans. Veh. Technol. 58(2), 990–997 (2009)CrossRef
23.
Zurück zum Zitat U. Madhow, J. Singh, R. Kumar et al., Multiple-target tracking with binary proximity sensors. ACM Trans. Sensor Netw. 8(1), 3–13 (2011) U. Madhow, J. Singh, R. Kumar et al., Multiple-target tracking with binary proximity sensors. ACM Trans. Sensor Netw. 8(1), 3–13 (2011)
24.
Zurück zum Zitat D. Wang, Y. Wang, Energy-efficient node selection for target tracking in wireless sensor networks. Int. J. Distrib. Sensor Netw. 9(1), 1–6 (2013)CrossRef D. Wang, Y. Wang, Energy-efficient node selection for target tracking in wireless sensor networks. Int. J. Distrib. Sensor Netw. 9(1), 1–6 (2013)CrossRef
25.
Zurück zum Zitat C.S. Raghavendra, K.M. Sivalingam, T. Znati, Wireless Sensor Networks (Springer, New York, 2006)MATH C.S. Raghavendra, K.M. Sivalingam, T. Znati, Wireless Sensor Networks (Springer, New York, 2006)MATH
26.
Zurück zum Zitat S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems (book). (Artech House, Norwood, 1999) S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems (book). (Artech House, Norwood, 1999)
27.
Zurück zum Zitat R. Stolkin, I. Florescu, Probability of detection and optimal sensor placement for threshold based detection systems, IEEE Sensors J. 9(1), 57–60 (2009)CrossRef R. Stolkin, I. Florescu, Probability of detection and optimal sensor placement for threshold based detection systems, IEEE Sensors J. 9(1), 57–60 (2009)CrossRef
28.
Zurück zum Zitat P.C. Mahalanobis, On the generalised distance in statistics., in Proceedings of the National Institute of Sciences of India, vol. 2 (Baptist Mission Press, 1936), pp. 49–55 P.C. Mahalanobis, On the generalised distance in statistics., in Proceedings of the National Institute of Sciences of India, vol. 2 (Baptist Mission Press, 1936), pp. 49–55
29.
Zurück zum Zitat L. Guibas F. Zhao, Wireless Sensor Networks: An Information Processing Approach (Morgan Kaufmann Publishers, Amsterdam, 2004) L. Guibas F. Zhao, Wireless Sensor Networks: An Information Processing Approach (Morgan Kaufmann Publishers, Amsterdam, 2004)
30.
Zurück zum Zitat S.M.H. Jalilolghadr, M. Sabaei. Proposed a new algorithm for real-time applications in routing of wireless sensor networks, in Proceedings of the International Conference on Management and Artificial Intelligence, Bali, 2011, pp. 1–3 S.M.H. Jalilolghadr, M. Sabaei. Proposed a new algorithm for real-time applications in routing of wireless sensor networks, in Proceedings of the International Conference on Management and Artificial Intelligence, Bali, 2011, pp. 1–3
31.
Zurück zum Zitat B. Krishnamachari, D. Estrin, S. Wicker, Modelling data-centric routing in wireless sensor networks. IEEE Infocom 2, 39–44 (2002) B. Krishnamachari, D. Estrin, S. Wicker, Modelling data-centric routing in wireless sensor networks. IEEE Infocom 2, 39–44 (2002)
32.
Zurück zum Zitat T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms (The MIT Press, Cambridge, 2010)MATH T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms (The MIT Press, Cambridge, 2010)MATH
33.
Zurück zum Zitat M. Morari F. Borrelli, A. Bemporad, Predictive Control for Linear and Hybrid Systems (Cambridge University Press, Cambridge, 2015)MATH M. Morari F. Borrelli, A. Bemporad, Predictive Control for Linear and Hybrid Systems (Cambridge University Press, Cambridge, 2015)MATH
34.
Zurück zum Zitat M. Johansson, A. Rantzer, Computation of piecewise quadratic lyapunov functions for hybrid systems, in 1997 European Control Conference (ECC), Brussels, July 1997, pp. 2005–2010 M. Johansson, A. Rantzer, Computation of piecewise quadratic lyapunov functions for hybrid systems, in 1997 European Control Conference (ECC), Brussels, July 1997, pp. 2005–2010
35.
Zurück zum Zitat N. Sandell, R. Oltafi-Saber, Distributed tracking in sensor networks with limited sensing range, in American Control Conference, Seattle, 2008, pp. 3158–3163 N. Sandell, R. Oltafi-Saber, Distributed tracking in sensor networks with limited sensing range, in American Control Conference, Seattle, 2008, pp. 3158–3163
36.
Zurück zum Zitat V.J. Aidala, Kalman filter behavior in bearings-only tracking applications. IEEE Trans. Aerosp. Electron. Syst. 15(1), 29–39 (1979)CrossRef V.J. Aidala, Kalman filter behavior in bearings-only tracking applications. IEEE Trans. Aerosp. Electron. Syst. 15(1), 29–39 (1979)CrossRef
37.
Zurück zum Zitat S. Nardone, A.G. Lindgren, K. Gong, Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Trans. Autom. Control 29(9), 775–787 (1984)CrossRef S. Nardone, A.G. Lindgren, K. Gong, Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Trans. Autom. Control 29(9), 775–787 (1984)CrossRef
38.
Zurück zum Zitat P. Rong, M. Sichitiu, Angle of arrival localization for wireless sensor networks, in 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, SECON’06, vol. 1 (IEEE, Reston, 2006), pp. 374–382 P. Rong, M. Sichitiu, Angle of arrival localization for wireless sensor networks, in 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, SECON’06, vol. 1 (IEEE, Reston, 2006), pp. 374–382
39.
Zurück zum Zitat P. Kułakowski, J. Vales-Alonso, E. Egea-López, W. Ludwin, J. García-Haro, Angle-of-arrival localization based on antenna arrays for wireless sensor networks. Comput. Electr. Eng. 36(6), 1181–1186 (2010)CrossRef P. Kułakowski, J. Vales-Alonso, E. Egea-López, W. Ludwin, J. García-Haro, Angle-of-arrival localization based on antenna arrays for wireless sensor networks. Comput. Electr. Eng. 36(6), 1181–1186 (2010)CrossRef
40.
Zurück zum Zitat B. Ristic, S. Arulampalam, J. McCarthy, Target motion analysis using range-only measurements: algorithms, performance and application to ingara isar data. Technical report, Defence Science and Technology Organisation Electronics and Surveillance Research, Salisbury, 2001 B. Ristic, S. Arulampalam, J. McCarthy, Target motion analysis using range-only measurements: algorithms, performance and application to ingara isar data. Technical report, Defence Science and Technology Organisation Electronics and Surveillance Research, Salisbury, 2001
41.
Zurück zum Zitat N Peach, Bearings-only tracking using a set of range-parameterised extended kalman filters. IEEE Proc. Control Theory Appl. 142(1), 73–80 (1995)CrossRef N Peach, Bearings-only tracking using a set of range-parameterised extended kalman filters. IEEE Proc. Control Theory Appl. 142(1), 73–80 (1995)CrossRef
42.
Zurück zum Zitat F. Zhao, L. Guibas (eds.), Information Processing in Sensor Networks (Springer, Berlin/Heidelberg, 2003) pp. 412–415 F. Zhao, L. Guibas (eds.), Information Processing in Sensor Networks (Springer, Berlin/Heidelberg, 2003) pp. 412–415
43.
Zurück zum Zitat D.P. Spanos, R. Olfati-Saber, R.M. Murray, Approximate distributed Kalman filtering in sensor networks with quantifiable performance, in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, 2005 D.P. Spanos, R. Olfati-Saber, R.M. Murray, Approximate distributed Kalman filtering in sensor networks with quantifiable performance, in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, 2005
44.
Zurück zum Zitat J. Thomas T. Cover, Elements of Information Theory (Wiley, Hoboken, 2006)MATH J. Thomas T. Cover, Elements of Information Theory (Wiley, Hoboken, 2006)MATH
45.
Zurück zum Zitat P. Tichavsky, C.H. Muravchik, A. Nehorai, Posterior cramer-rao bounds for discrete-time nonlinear filtering. IEEE Trans. Signal Process. 46(5), 1386–1396 (1998)CrossRef P. Tichavsky, C.H. Muravchik, A. Nehorai, Posterior cramer-rao bounds for discrete-time nonlinear filtering. IEEE Trans. Signal Process. 46(5), 1386–1396 (1998)CrossRef
46.
Zurück zum Zitat N. Gordon, B. Ristic, S. Arulampalam, Beyond the Kalman Filter (Artech House, Boston, 2004)MATH N. Gordon, B. Ristic, S. Arulampalam, Beyond the Kalman Filter (Artech House, Boston, 2004)MATH
47.
Zurück zum Zitat C. Yang, L. M. Kaplan, E. Blasch, M. Bakich, Optimal placement of heterogeneous sensors for targets with Gaussian priors. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1637–1653 (2013)CrossRef C. Yang, L. M. Kaplan, E. Blasch, M. Bakich, Optimal placement of heterogeneous sensors for targets with Gaussian priors. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1637–1653 (2013)CrossRef
Metadaten
Titel
Optimization of Multi-target Tracking Within a Sensor Network Via Information Guided Clustering
verfasst von
Alexander A. Soderlund
Mrinal Kumar
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-95504-9_15