Skip to main content

2022 | OriginalPaper | Buchkapitel

Optimization of Nanofluid Parameters for Double Pipe Heat Exchanger

verfasst von : K. Manjunath

Erschienen in: Recent Advances in Manufacturing, Automation, Design and Energy Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the optimum nanofluid parameters are established for double pipe heat exchanger (DPHE) which are commonly used in sensible heating and cooling of fluids. For the same heat transfer surface area and same fluids temperature difference, performance comparisons are carried out by the use of nanofluid and without nanofluid, that is, base fluid itself. Important parameters of nanofluids such as volume concentrations and nanoparticle diameter are varied with respect to second law thermodynamic non-dimensional performance parameters exergetic efficiency and entropy generation number. Also, heat exchanger parametric study is carried out by variations of hot fluid temperature drop, surface area, and length-to-diameter ratio. Although there is increase in heat transfer and effectiveness of DPHE by the use of nanofluid, this will not guarantee higher performance. Because there will be reduction of exergetic efficiency and increase in irreversibilities of heat exchangers. The reasons for this are investigated in this work, and suggestions are provided to choose the optimum values of nanofluid particles based on second law efficiency analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bejan, A.: Entropy-Generation-Minimization. CRS Press. Boca Raton (1996) Bejan, A.: Entropy-Generation-Minimization. CRS Press. Boca Raton (1996)
2.
Zurück zum Zitat Manjunath, K., Kaushik, S.C.: Second-law-thermodynamic study of heat exchangers: a review. Renew. Sustain. Energy Rev. 40, 348–374 (2014)CrossRef Manjunath, K., Kaushik, S.C.: Second-law-thermodynamic study of heat exchangers: a review. Renew. Sustain. Energy Rev. 40, 348–374 (2014)CrossRef
3.
Zurück zum Zitat Singh, P.K., Anoop, K.B., Sundararajan, T., Das, S.K.: Entropy generation due to fluid flow and heat-transfer in nanofluids. Int. J. Heat Mass Transfer 53(21–22), 4757–4767 (2010) Singh, P.K., Anoop, K.B., Sundararajan, T., Das, S.K.: Entropy generation due to fluid flow and heat-transfer in nanofluids. Int. J. Heat Mass Transfer 53(21–22), 4757–4767 (2010)
4.
Zurück zum Zitat Moghaddami, M., Mohammadzade, A., Esfehani, S.A.V.: Second-law analysis of nanofluid flow. Energy Convers. Manag. 52(2), 1397–1405 (2011) Moghaddami, M., Mohammadzade, A., Esfehani, S.A.V.: Second-law analysis of nanofluid flow. Energy Convers. Manag. 52(2), 1397–1405 (2011)
5.
Zurück zum Zitat Sohel, M.R., Saidur, R., Hassan, N.H., Elias, M.M., Khaleduzzaman, S.S., Mahbubul, I.M.: Analysis of entropy-generation using nanofluid flow through the circular micro channel and mini channel heat sink. Int. Commun. Heat Mass Transfer 46, 85–91 (2013) Sohel, M.R., Saidur, R., Hassan, N.H., Elias, M.M., Khaleduzzaman, S.S., Mahbubul, I.M.: Analysis of entropy-generation using nanofluid flow through the circular micro channel and mini channel heat sink. Int. Commun. Heat Mass Transfer 46, 85–91 (2013)
6.
Zurück zum Zitat Bianco, Vincenzo, Oronzio Manca, and Sergio Nardini.: Entropy-generation analysis of turbulent convection flow of Al2O3–water nanofluid in circular tube subjected to constant wall heat-flux. Energy Conversion and Management 77, 306–314 (2014). Bianco, Vincenzo, Oronzio Manca, and Sergio Nardini.: Entropy-generation analysis of turbulent convection flow of Al2O3–water nanofluid in circular tube subjected to constant wall heat-flux. Energy Conversion and Management 77, 306–314 (2014).
7.
Zurück zum Zitat Bianco, V., Manca, O., Nardini, S.: Performance analysis of turbulent convection heat-transfer of Al2O3 water nanofluid in circular tubes at constant-wall temperature. Energy 77, 403–413 (2014) Bianco, V., Manca, O., Nardini, S.: Performance analysis of turbulent convection heat-transfer of Al2O3 water nanofluid in circular tubes at constant-wall temperature. Energy 77, 403–413 (2014)
8.
Zurück zum Zitat Khaleduzzaman, S.S., Sohel, M.R., Mahbubul, I.M., Saidur, R., Selvaraj, J.: Exergy and entropy-generation analysis of TiO2 water nanofluid flow through the water block as an electronics device. Int. J. Heat Mass Transf. 101, 104–111 (2016)CrossRef Khaleduzzaman, S.S., Sohel, M.R., Mahbubul, I.M., Saidur, R., Selvaraj, J.: Exergy and entropy-generation analysis of TiO2 water nanofluid flow through the water block as an electronics device. Int. J. Heat Mass Transf. 101, 104–111 (2016)CrossRef
9.
Zurück zum Zitat Bahiraei, M., Majd, S.M.: Prediction of entropy-generation for nanofluid flow through a triangular mini channel using neural-network. Adv. Powder Technol. 27(2), 673–683 (2016) Bahiraei, M., Majd, S.M.: Prediction of entropy-generation for nanofluid flow through a triangular mini channel using neural-network. Adv. Powder Technol. 27(2), 673–683 (2016)
10.
Zurück zum Zitat Sarlak, A., Ahmadpour, A., Hajmohammadi, M.R.: Thermal design improvement of a double layered micro channel heat sink by using multi walled carbon nanotube nanofluids with non Newtonian viscosity. Appl. Therm. Eng. 147, 205–215 (2019)CrossRef Sarlak, A., Ahmadpour, A., Hajmohammadi, M.R.: Thermal design improvement of a double layered micro channel heat sink by using multi walled carbon nanotube nanofluids with non Newtonian viscosity. Appl. Therm. Eng. 147, 205–215 (2019)CrossRef
11.
Zurück zum Zitat Hajmohammadi, M.R., Toghraei, I.: Optimal-design and thermal-performance improvement of a double layered micro channel heat sink by introducing Al2O3 nano particles into the water. Phys. A 505, 328–344 (2018)CrossRef Hajmohammadi, M.R., Toghraei, I.: Optimal-design and thermal-performance improvement of a double layered micro channel heat sink by introducing Al2O3 nano particles into the water. Phys. A 505, 328–344 (2018)CrossRef
12.
Zurück zum Zitat Bhattad, A., Sarkar, J., Ghosh, P.: Energetic and exergetic performances of plate-heat exchanger using brine based hybrid nanofluid for milk chilling application. Heat Transfer Eng. 41(6–7), 522–535 (2020) Bhattad, A., Sarkar, J., Ghosh, P.: Energetic and exergetic performances of plate-heat exchanger using brine based hybrid nanofluid for milk chilling application. Heat Transfer Eng. 41(6–7), 522–535 (2020)
13.
Zurück zum Zitat Rashidi, M.M., Nasiri, M., Shadloo, M.S., Yang, Z.: Entropy-generation in a circular tube heat exchanger using nanofluids effects of different modeling approaches. Heat Transfer Eng. 38(9), 853–866 (2017) Rashidi, M.M., Nasiri, M., Shadloo, M.S., Yang, Z.: Entropy-generation in a circular tube heat exchanger using nanofluids effects of different modeling approaches. Heat Transfer Eng. 38(9), 853–866 (2017)
14.
Zurück zum Zitat Deymi-Dashtebayaz, M., Akhoundi, M., Ebrahimi-Moghadam, A., Arabkoohsar, A., Moghadam, A.J., Farzaneh-Gord, M.: Thermo hydraulic analysis and optimization of CuO water nanofluid inside helically dimpled-heat exchangers. J. Thermal Anal. Calorimetry 1–16 (2020) Deymi-Dashtebayaz, M., Akhoundi, M., Ebrahimi-Moghadam, A., Arabkoohsar, A., Moghadam, A.J., Farzaneh-Gord, M.: Thermo hydraulic analysis and optimization of CuO water nanofluid inside helically dimpled-heat exchangers. J. Thermal Anal. Calorimetry 1–16 (2020)
15.
Zurück zum Zitat Nakhchi, M.E., Rahmati, M.T.: Entropy-generation of turbulent Cu water nanofluid flows inside thermal systems equipped with transverse cut twisted turbulators. J. Thermal Anal. Calorimetry 1–10 (2020) Nakhchi, M.E., Rahmati, M.T.: Entropy-generation of turbulent Cu water nanofluid flows inside thermal systems equipped with transverse cut twisted turbulators. J. Thermal Anal. Calorimetry 1–10 (2020)
16.
Zurück zum Zitat Bhattad, A., Sarkar, J., Ghosh, P.: Heat-transfer characteristics of plate heat exchanger using hybrid nanofluids: effect of nanoparticle mixture-ratio. Heat Mass Transfer 1–16 (2020) Bhattad, A., Sarkar, J., Ghosh, P.: Heat-transfer characteristics of plate heat exchanger using hybrid nanofluids: effect of nanoparticle mixture-ratio. Heat Mass Transfer 1–16 (2020)
17.
Zurück zum Zitat Shafee, A., Sheikholeslami, M., Jafaryar, M., Babazadeh, H.: Irreversibility of hybrid-nanoparticles within a pipe fitted with turbulator. J. Thermal Anal. Calorimetry 1–9 (2020) Shafee, A., Sheikholeslami, M., Jafaryar, M., Babazadeh, H.: Irreversibility of hybrid-nanoparticles within a pipe fitted with turbulator. J. Thermal Anal. Calorimetry 1–9 (2020)
18.
Zurück zum Zitat Wang, Z., Han, F., Ji, Y., Li, W.: Performance and exergy-transfer analysis of heat exchangers with graphene-nanofluids in seawater source marine heat pump system. Energies 13(7), 1762 (2020) Wang, Z., Han, F., Ji, Y., Li, W.: Performance and exergy-transfer analysis of heat exchangers with graphene-nanofluids in seawater source marine heat pump system. Energies 13(7), 1762 (2020)
19.
Zurück zum Zitat Manjunath, K., Kaushik, S.C.: Second-law efficiency analysis of heat-exchangers. Heat Transfer Asian Res. 44, 289–108 (2015) Manjunath, K., Kaushik, S.C.: Second-law efficiency analysis of heat-exchangers. Heat Transfer Asian Res. 44, 289–108 (2015)
20.
Zurück zum Zitat Kotas, T.-J.: The Exergy-Method of Thermal Plant Analysis. Elsevier (2013) Kotas, T.-J.: The Exergy-Method of Thermal Plant Analysis. Elsevier (2013)
21.
Zurück zum Zitat Manjunath, K., Kaushik, S.C.: The second-law analysis of an unbalanced-constructal heat exchanger. Int. J. Green Energy 11(2), 173–192 (2014)CrossRef Manjunath, K., Kaushik, S.C.: The second-law analysis of an unbalanced-constructal heat exchanger. Int. J. Green Energy 11(2), 173–192 (2014)CrossRef
22.
Zurück zum Zitat Kakac, S., Liu, H.: Heat Exchangers Selection, Rating and Thermal Design. CRC Press (1997) Kakac, S., Liu, H.: Heat Exchangers Selection, Rating and Thermal Design. CRC Press (1997)
23.
Zurück zum Zitat Klein, S.A.: Engineering-Equation-Solver, Version 8.158. F-Chart Software, Middleton, WI (2008) Klein, S.A.: Engineering-Equation-Solver, Version 8.158. F-Chart Software, Middleton, WI (2008)
Metadaten
Titel
Optimization of Nanofluid Parameters for Double Pipe Heat Exchanger
verfasst von
K. Manjunath
Copyright-Jahr
2022
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-4222-7_88

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.