Skip to main content

2023 | OriginalPaper | Buchkapitel

Optimization of Neural Network-Based Load Forecasting by Means of Whale Optimization Algorithm

verfasst von : Pooya Valinataj Bahnemiri, Francesco Grimaccia, Sonia Leva, Marco Mussetta

Erschienen in: ELECTRIMACS 2022

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electric load forecasting is of utmost importance for governments and power market participants for planning and monitoring load generation and consumption. Reliable Short-Term Load Forecasting (STLF) can guarantee market operators and participants to manage their operations correctly, securely, and effectively. This paper presents the optimization of neural networks for power forecasting by means of whale optimization algorithm: two types of artificial neural networks namely, Feed-Forward Neural Network (FNN) and Echo State Network (ESN) have been used for STLF. ESN’s simplicity and strength have room for improvement. Therefore, an optimization algorithm called the Whale Optimization Algorithm (WOA) has been used to improve ESN’s performance. WOA-ESN was used for STLF of the first case study, namely Puget power utility in North America. The considered forecasting error indicators showed significant accuracy and reliability. WOA-ESN model and recursive approach resulted in better accuracy measures in terms of standard performance metrics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat M. Mansoor, F. Grimaccia, S. Leva, M. Mussetta, “Comparison of echo state network and feed-forward neural networks in electrical load forecasting for demand response programs”, Mathematics and Computers in Simulation, Vol. 184, 2021, Pages 282–293.MathSciNetCrossRefMATH M. Mansoor, F. Grimaccia, S. Leva, M. Mussetta, “Comparison of echo state network and feed-forward neural networks in electrical load forecasting for demand response programs”, Mathematics and Computers in Simulation, Vol. 184, 2021, Pages 282–293.MathSciNetCrossRefMATH
3.
Zurück zum Zitat European Union, “Energy roadmap 2050,” Publications Office of the European Union, 2012. European Union, “Energy roadmap 2050,” Publications Office of the European Union, 2012.
4.
Zurück zum Zitat R. Blaga, A. Sabadus, N. Stefu, C. Dughir, M. Paulescu, and V. Badescu, “A current perspective on the accuracy of incoming solar energy forecasting,” Progress in Energy and Combustion Science, vol. 70, pp. 119–144, 2019.CrossRef R. Blaga, A. Sabadus, N. Stefu, C. Dughir, M. Paulescu, and V. Badescu, “A current perspective on the accuracy of incoming solar energy forecasting,” Progress in Energy and Combustion Science, vol. 70, pp. 119–144, 2019.CrossRef
5.
Zurück zum Zitat Z. C. Lipton, J. Berkowitz and C. Elkan, “A Critical Review of Recurrent Neural Networks for Sequence Learning,” arXiv, 2015. Z. C. Lipton, J. Berkowitz and C. Elkan, “A Critical Review of Recurrent Neural Networks for Sequence Learning,” arXiv, 2015.
6.
Zurück zum Zitat A. Bala, I. Ismail, R. Ibrahim and S. M. Sait, “Applications of Metaheuristics in Reservoir Computing Techniques: A Review,” IEEE Access, vol. 6, pp. 58012–58029, 2018.CrossRef A. Bala, I. Ismail, R. Ibrahim and S. M. Sait, “Applications of Metaheuristics in Reservoir Computing Techniques: A Review,” IEEE Access, vol. 6, pp. 58012–58029, 2018.CrossRef
7.
Zurück zum Zitat H. Jaeger, “The “echo state” approach to analysing and training recurrent neural networks (2001),” 2001. H. Jaeger, “The “echo state” approach to analysing and training recurrent neural networks (2001),” 2001.
8.
Zurück zum Zitat W. Maass, “Liquid State Machines: Motivation, Theory, and Applications,” Computability in Context, pp. 275–296, 2011. W. Maass, “Liquid State Machines: Motivation, Theory, and Applications,” Computability in Context, pp. 275–296, 2011.
9.
Zurück zum Zitat J. J. Steil, “Backpropagation-decorrelation: online recurrent learning with O(N) complexity,” in 2004 IEEE International Joint Conference on Neural Networks, 2004. J. J. Steil, “Backpropagation-decorrelation: online recurrent learning with O(N) complexity,” in 2004 IEEE International Joint Conference on Neural Networks, 2004.
10.
Zurück zum Zitat G. Shi, D. Liu and Q. Wei, “Energy consumption prediction of office buildings based on echo state networks,” Neurocomputing, vol. 216, pp. 478–488, 2016.CrossRef G. Shi, D. Liu and Q. Wei, “Energy consumption prediction of office buildings based on echo state networks,” Neurocomputing, vol. 216, pp. 478–488, 2016.CrossRef
11.
Zurück zum Zitat M. A. Chitsazan, M. Sami Fadali and A. M. Trzynadlowski, “Wind speed and wind direction forecasting using echo state network with nonlinear functions,” Renewable Energy, vol. 131, pp. 879–889, 2019.CrossRef M. A. Chitsazan, M. Sami Fadali and A. M. Trzynadlowski, “Wind speed and wind direction forecasting using echo state network with nonlinear functions,” Renewable Energy, vol. 131, pp. 879–889, 2019.CrossRef
12.
Zurück zum Zitat X. Yao, Z. Wang and H. Zhang, “A novel photovoltaic power forecasting model based on echo state network,” Neurocomputing, vol. 325, pp. 182–189, 2019.CrossRef X. Yao, Z. Wang and H. Zhang, “A novel photovoltaic power forecasting model based on echo state network,” Neurocomputing, vol. 325, pp. 182–189, 2019.CrossRef
13.
Zurück zum Zitat S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, 2016.CrossRef S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, 2016.CrossRef
14.
Zurück zum Zitat H. Jaeger, “Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach,” GMD Report 159, German National Research Center for Information Technology, 2002. H. Jaeger, “Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach,” GMD Report 159, German National Research Center for Information Technology, 2002.
15.
Zurück zum Zitat R. E. Abdel-Aal, “Hourly temperature forecasting using abductive networks,” Engineering Applications of Artificial Intelligence, vol. 17, pp. 543–556, 2004.CrossRef R. E. Abdel-Aal, “Hourly temperature forecasting using abductive networks,” Engineering Applications of Artificial Intelligence, vol. 17, pp. 543–556, 2004.CrossRef
16.
Zurück zum Zitat A. Deihimi, O. Orang and H. Showkati, “Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction,” Energy, vol. 57, pp. 382–401, 2013.CrossRef A. Deihimi, O. Orang and H. Showkati, “Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction,” Energy, vol. 57, pp. 382–401, 2013.CrossRef
17.
Zurück zum Zitat A. Deihimi and H. Showkati, “Application of echo state networks in short-term load forecasting,” Energy, vol. 39, pp. 327–340, 2012.CrossRef A. Deihimi and H. Showkati, “Application of echo state networks in short-term load forecasting,” Energy, vol. 39, pp. 327–340, 2012.CrossRef
18.
Zurück zum Zitat M. Hanmandlu and B. K. Chauhan, “Load forecasting using hybrid models,” IEEE Transactions on Power Systems, vol. 26, pp. 20–29, 2011.CrossRef M. Hanmandlu and B. K. Chauhan, “Load forecasting using hybrid models,” IEEE Transactions on Power Systems, vol. 26, pp. 20–29, 2011.CrossRef
19.
Zurück zum Zitat C. M. Huang, C. J. Huang and M. L. Wang, “A particle swarm optimization to identifying the ARMAX model for short-term load forecasting,” IEEE Transactions on Power Systems, vol. 20, pp. 1126–1133, 2005.CrossRef C. M. Huang, C. J. Huang and M. L. Wang, “A particle swarm optimization to identifying the ARMAX model for short-term load forecasting,” IEEE Transactions on Power Systems, vol. 20, pp. 1126–1133, 2005.CrossRef
Metadaten
Titel
Optimization of Neural Network-Based Load Forecasting by Means of Whale Optimization Algorithm
verfasst von
Pooya Valinataj Bahnemiri
Francesco Grimaccia
Sonia Leva
Marco Mussetta
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-24837-5_44