Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.01.2010 | Focus | Ausgabe 2/2010

Soft Computing 2/2010

Optimization of silicon solar cell fabrication based on neural network and genetic programming modeling

Zeitschrift:
Soft Computing > Ausgabe 2/2010
Autoren:
Hyeon Bae, Tae-Ryong Jeon, Sungshin Kim, Hyun-Soo Kim, Dongseop Kim, Seung-Soo Han, Gary S. May

Abstract

This study describes techniques for the cascade modeling and the optimization that are required to conduct the simulator-based process optimization of solar cell fabrication. Two modeling approaches, neural networks and genetic programming, are employed to model the crucial relation for the consecutively connected two processes in solar cell fabrication. One model (Model 1) is used to map the five inputs (time, amount of nitrogen and DI water in surface texturing and temperature and time in emitter diffusion) to the two outputs (reflectance and sheet resistance) of the first process. The other model (Model 2) is used to connect the two inputs (reflectance and sheet resistance) to the one output (efficiency) of the second process. After modeling of the two processes, genetic algorithms and particle swarm optimization were applied to search for the optimal recipe. In the first optimization stage, we searched for the optimal reflectance and sheet resistance that can provide the best efficiency in the fabrication process. The optimized reflectance and sheet resistance found by the particle swarm optimization were better than those found by the genetic algorithm. In the second optimization stage, the five input parameters were searched by using the reflectance and sheet resistance values obtained in the first stage. The found five variables such as the texturing time, amount of nitrogen, DI water, diffusion time, and temperature are used as a recipe for the solar cell fabrication. The amount of nitrogen, DI water, and diffusion time in the optimized recipes showed considerable differences according to the modeling approaches. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller variations, implying greater consistency in recipe generation.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2010

Soft Computing 2/2010 Zur Ausgabe

Premium Partner

    Bildnachweise