Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Measurement Techniques 12/2022

04.05.2022

Optimization of the Kernel Probability Density Estimation of a Two-Dimensional Random Variable with Independent Components

verfasst von: A. V. Lapko, V. A. Lapko, A. V. Bakhtina

Erschienen in: Measurement Techniques | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The paper studies the problem associated with the optimization of nonparametric probability density estimates, whose relevance is attributed to the lower efficiency of nonparametric algorithms for data processing with the increasing amount of statistical data. In this study, the authors examine a procedure for optimizing the kernel density estimation of a two-dimensional random variable having independent components. The possibility of using the optimal bandwidths of the kernel density estimates of one-dimensional random variables when synthesizing the two-dimensional nonparametric probability density of a random variable having independent components is justified. The proposed approach relies on the asymptotic properties of Rosenblatt–Parzen nonparametric probability density estimation. For a two-dimensional random variable, it is shown that the main contribution to the asymptotic expression for standard deviation is made by the corresponding criteria for one-dimensional random variables. When estimating two-dimensional probability density, it is possible to use bandwidths to minimize the standard deviations of one-dimensional random variables. The obtained conclusions are confirmed by the results of computational experiments in the analysis of normal distribution laws. The possibility of developing the proposed procedure for optimizing the nonparametric probability density estimates of multidimensional random variables having independent components is demonstrated.
Literatur
2.
Zurück zum Zitat A. G. Varzhapetyan and E. Yu. Mikhailova, “Methods for selecting the key characteristics of nonparametric algorithms for identifying the reliability models of complex systems on the basis of operational data,” Vopr. Kibern., No. 94, 77–87 (1982). A. G. Varzhapetyan and E. Yu. Mikhailova, “Methods for selecting the key characteristics of nonparametric algorithms for identifying the reliability models of complex systems on the basis of operational data,” Vopr. Kibern., No. 94, 77–87 (1982).
3.
Zurück zum Zitat B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London (1986). MATH B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London (1986). MATH
4.
Zurück zum Zitat Z. I. Botev, J. F. Grotowski, and D. P. Kroese, Ann. Stat., 38, No. 5, 2916–2957 (2010). CrossRef Z. I. Botev, J. F. Grotowski, and D. P. Kroese, Ann. Stat., 38, No. 5, 2916–2957 (2010). CrossRef
5.
Zurück zum Zitat A. V. Dobrovidov and I. M. Rud’ko, “Selection of the kernel function bandwidth in the nonparametric estimation of derivative density via smoothed cross-validation,” Avtomat. Telemekh., No. 2, 42–58 (2010). A. V. Dobrovidov and I. M. Rud’ko, “Selection of the kernel function bandwidth in the nonparametric estimation of derivative density via smoothed cross-validation,” Avtomat. Telemekh., No. 2, 42–58 (2010).
8.
Zurück zum Zitat D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley, New York (2015). MATH D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley, New York (2015). MATH
10.
Zurück zum Zitat V. A. Epanechnikov, “Nonparametric estimation of multidimensional probability density,” Teor. Veroyatn. Primen., 14, No. 1, 156–161 (1969). MathSciNetMATH V. A. Epanechnikov, “Nonparametric estimation of multidimensional probability density,” Teor. Veroyatn. Primen., 14, No. 1, 156–161 (1969). MathSciNetMATH
11.
Zurück zum Zitat A. V. Lapko and V. A. Lapko, “Nonparametric probability density estimation of independent random variables,” Inform. Sist. Upravl., 29, No. 3, 118–124 (2011). A. V. Lapko and V. A. Lapko, “Nonparametric probability density estimation of independent random variables,” Inform. Sist. Upravl., 29, No. 3, 118–124 (2011).
Metadaten
Titel
Optimization of the Kernel Probability Density Estimation of a Two-Dimensional Random Variable with Independent Components
verfasst von
A. V. Lapko
V. A. Lapko
A. V. Bakhtina
Publikationsdatum
04.05.2022
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 12/2022
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-022-02029-0

Weitere Artikel der Ausgabe 12/2022

Measurement Techniques 12/2022 Zur Ausgabe