Skip to main content
Erschienen in: Applied Composite Materials 5/2016

01.10.2016

Optimization of the Temperature-Time Curve for the Curing Process of Thermoset Matrix Composites

verfasst von: Dragan Aleksendrić, Pierpaolo Carlone, Velimir Ćirović

Erschienen in: Applied Composite Materials | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An intelligent optimization model aiming at off-line or pre-series optimization of the thermal curing cycle of polymer matrix composites is proposed and discussed. The computational procedure is based on the coupling of a finite element thermochemical process model, dynamic artificial neural networks and genetic algorithms. Objective of the optimization routine is the maximization of the composite degree of cure by the definition of the autoclave temperature. Obtained outcomes evidenced the capability of the method as well as its efficiency with respect to hard computing or experimental procedures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu, Q., Lin, Y., Zong, Z., et al.: Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos. Struct. 97, 231–238 (2013)CrossRef Liu, Q., Lin, Y., Zong, Z., et al.: Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos. Struct. 97, 231–238 (2013)CrossRef
2.
Zurück zum Zitat Gutowski, T.G.: Advanced composites manufacturing, 1st edn, p. 600. Wiley-Interscience, New York (1997) Gutowski, T.G.: Advanced composites manufacturing, 1st edn, p. 600. Wiley-Interscience, New York (1997)
3.
Zurück zum Zitat Bowles, K.J., Frimpong, S.: Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites. J. Compos. Mater. 26, 1487–1509 (1992)CrossRef Bowles, K.J., Frimpong, S.: Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites. J. Compos. Mater. 26, 1487–1509 (1992)CrossRef
4.
Zurück zum Zitat Olivier, P., Cavarero, M.: Comparison between longitudinal tensile characteristics of thin and thick thermoset composite laminates: influence of curing conditions. Comput. Struct. 76, 125–137 (2000)CrossRef Olivier, P., Cavarero, M.: Comparison between longitudinal tensile characteristics of thin and thick thermoset composite laminates: influence of curing conditions. Comput. Struct. 76, 125–137 (2000)CrossRef
5.
Zurück zum Zitat Ersoy, N., Garstka, T., Potter, K., et al.: Development of the properties of a carbon fibre reinforced thermosetting composite through cure. Compos. Part A Appl. Sci. Manuf. 41, 401–409 (2010)CrossRef Ersoy, N., Garstka, T., Potter, K., et al.: Development of the properties of a carbon fibre reinforced thermosetting composite through cure. Compos. Part A Appl. Sci. Manuf. 41, 401–409 (2010)CrossRef
6.
Zurück zum Zitat Young, W.-B.: Compacting pressure and cure cycle for processing of thick composite laminates. Compos. Sci. Technol. 54, 299–306 (1995)CrossRef Young, W.-B.: Compacting pressure and cure cycle for processing of thick composite laminates. Compos. Sci. Technol. 54, 299–306 (1995)CrossRef
7.
Zurück zum Zitat Ruiz, E., Trochu, F.: Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts. Compos. Part A Appl. Sci. Manuf. 36, 806–826 (2005)CrossRef Ruiz, E., Trochu, F.: Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts. Compos. Part A Appl. Sci. Manuf. 36, 806–826 (2005)CrossRef
8.
Zurück zum Zitat Kootsookos, A., Mouritz, A.P.: Seawater durability of glass- and carbon-polymer composites. Compos. Sci. Technol. 64, 1503–1511 (2004)CrossRef Kootsookos, A., Mouritz, A.P.: Seawater durability of glass- and carbon-polymer composites. Compos. Sci. Technol. 64, 1503–1511 (2004)CrossRef
9.
Zurück zum Zitat Centea, T., Grunenfelder, L.K., Nutt, S.R.: A review of out-of-autoclave prepregs – Material properties, process phenomena, and manufacturing considerations. Compos. Part A Appl. Sci. Manuf. 70, 132–154 (2014)CrossRef Centea, T., Grunenfelder, L.K., Nutt, S.R.: A review of out-of-autoclave prepregs – Material properties, process phenomena, and manufacturing considerations. Compos. Part A Appl. Sci. Manuf. 70, 132–154 (2014)CrossRef
10.
Zurück zum Zitat Yi, S., Hilton, H.H., Ahmad, M.F.: A finite element approach for cure simulation of thermosetting matrix composites. Comput. Struct. 64, 383–388 (1997)CrossRef Yi, S., Hilton, H.H., Ahmad, M.F.: A finite element approach for cure simulation of thermosetting matrix composites. Comput. Struct. 64, 383–388 (1997)CrossRef
11.
Zurück zum Zitat Costa, V.A.F., Sousa, A.C.M.: Modeling of flow and thermo-kinetics during the cure of thick laminated composites. Int. J. Therm. Sci. 42, 15–22 (2003)CrossRef Costa, V.A.F., Sousa, A.C.M.: Modeling of flow and thermo-kinetics during the cure of thick laminated composites. Int. J. Therm. Sci. 42, 15–22 (2003)CrossRef
12.
Zurück zum Zitat Mawardi, A., Pitchumani, R.: Optimal temperature and current cycles for curing of composites using embedded resistive heating elements. J. Heat Transfer. 125, 126–136 (2003)CrossRef Mawardi, A., Pitchumani, R.: Optimal temperature and current cycles for curing of composites using embedded resistive heating elements. J. Heat Transfer. 125, 126–136 (2003)CrossRef
13.
Zurück zum Zitat Carlone, P., Palazzo, G.S.: Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates. Int. J. Mater. Form. 2, 137–140 (2009)CrossRef Carlone, P., Palazzo, G.S.: Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates. Int. J. Mater. Form. 2, 137–140 (2009)CrossRef
14.
Zurück zum Zitat Dufour, P., Michaud, D.J., Touré, Y., et al.: A partial differential equation model predictive control strategy: application to autoclave composite processing. Comput. Chem. Eng. 28, 545–556 (2004)CrossRef Dufour, P., Michaud, D.J., Touré, Y., et al.: A partial differential equation model predictive control strategy: application to autoclave composite processing. Comput. Chem. Eng. 28, 545–556 (2004)CrossRef
15.
Zurück zum Zitat Ruiz, E., Trochu, F.: Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time. Compos. Part A Appl. Sci. Manuf. 37, 913–924 (2006)CrossRef Ruiz, E., Trochu, F.: Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time. Compos. Part A Appl. Sci. Manuf. 37, 913–924 (2006)CrossRef
16.
Zurück zum Zitat Carlone, P., Palazzo, G.S.: Composite laminates cure cycle optimisation by meta-heuristic algorithms. Int. J. Mater. Prod. Technol. 46, 106–123 (2013)CrossRef Carlone, P., Palazzo, G.S.: Composite laminates cure cycle optimisation by meta-heuristic algorithms. Int. J. Mater. Prod. Technol. 46, 106–123 (2013)CrossRef
17.
Zurück zum Zitat Zheng, S., Li, Z., Wang, H.: A genetic fuzzy radial basis function neural network for structural health monitoring of composite laminated beams. Expert Syst. Appl. 38, 11837–11842 (2011)CrossRef Zheng, S., Li, Z., Wang, H.: A genetic fuzzy radial basis function neural network for structural health monitoring of composite laminated beams. Expert Syst. Appl. 38, 11837–11842 (2011)CrossRef
18.
Zurück zum Zitat Gomes, H.M., Awruch, A.M., Lopes, P.A.M.: Reliability based optimization of laminated composite structures using genetic algorithms and artificial neural networks. Struct. Saf. 33, 186–195 (2011)CrossRef Gomes, H.M., Awruch, A.M., Lopes, P.A.M.: Reliability based optimization of laminated composite structures using genetic algorithms and artificial neural networks. Struct. Saf. 33, 186–195 (2011)CrossRef
19.
Zurück zum Zitat Kam, T.Y., Lai, F.M., Sher, H.F.: Optimal paramerers for curing graphite/epoxy composite laminates. J. Mater. Process. Technol. 48, 357–363 (1995)CrossRef Kam, T.Y., Lai, F.M., Sher, H.F.: Optimal paramerers for curing graphite/epoxy composite laminates. J. Mater. Process. Technol. 48, 357–363 (1995)CrossRef
20.
Zurück zum Zitat Aleksendric, D., Senatore, A.: Optimization of manufacturing process effects on brake friction material wear. J. Compos. Mater. 46, 2777–2791 (2012)CrossRef Aleksendric, D., Senatore, A.: Optimization of manufacturing process effects on brake friction material wear. J. Compos. Mater. 46, 2777–2791 (2012)CrossRef
21.
Zurück zum Zitat Carlone, P., Aleksendrić, D., Ćirović, V., et al.: Modelling of thermoset matrix composite curing process. Key Eng. Mater. 611–612, 1667–1674 (2014)CrossRef Carlone, P., Aleksendrić, D., Ćirović, V., et al.: Modelling of thermoset matrix composite curing process. Key Eng. Mater. 611–612, 1667–1674 (2014)CrossRef
22.
Zurück zum Zitat Cook, D.F., Whittaker, A.D.: Neural-network process modeling of a continuous manufacturing operation. Eng. Appl. Artif. Intell. 6, 559–564 (1993)CrossRef Cook, D.F., Whittaker, A.D.: Neural-network process modeling of a continuous manufacturing operation. Eng. Appl. Artif. Intell. 6, 559–564 (1993)CrossRef
23.
Zurück zum Zitat Sukthomya W, Tannock J. The training of neural networks to model manufacturing processes. J Intell Manuf 2005; 39–51. Sukthomya W, Tannock J. The training of neural networks to model manufacturing processes. J Intell Manuf 2005; 39–51.
24.
Zurück zum Zitat Das, P., Mukherjee, S., Ganguly, S., et al.: Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function. Comput. Mater. Sci. 45, 104–110 (2009)CrossRef Das, P., Mukherjee, S., Ganguly, S., et al.: Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function. Comput. Mater. Sci. 45, 104–110 (2009)CrossRef
25.
Zurück zum Zitat Ko, Y.-D., Moon, P., Kim, C.E., et al.: Modeling and optimization of the growth rate for ZnO thin films using neural networks and genetic algorithms. Expert Syst. Appl. 36, 4061–4066 (2009)CrossRef Ko, Y.-D., Moon, P., Kim, C.E., et al.: Modeling and optimization of the growth rate for ZnO thin films using neural networks and genetic algorithms. Expert Syst. Appl. 36, 4061–4066 (2009)CrossRef
26.
Zurück zum Zitat Reihanian, M., Asadullahpour, S.R., Hajarpour, S., et al.: Application of neural network and genetic algorithm to powder metallurgy of pure iron. Mater. Des. 32, 3183–3188 (2011)CrossRef Reihanian, M., Asadullahpour, S.R., Hajarpour, S., et al.: Application of neural network and genetic algorithm to powder metallurgy of pure iron. Mater. Des. 32, 3183–3188 (2011)CrossRef
27.
Zurück zum Zitat Esmaeili, R., Dashtbayazi, M.R.: Modeling and optimization for microstructural properties of Al/SiC nanocomposite by artificial neural network and genetic algorithm. Expert Syst. Appl. 41, 5817–5831 (2014)CrossRef Esmaeili, R., Dashtbayazi, M.R.: Modeling and optimization for microstructural properties of Al/SiC nanocomposite by artificial neural network and genetic algorithm. Expert Syst. Appl. 41, 5817–5831 (2014)CrossRef
28.
Zurück zum Zitat Aleksendric, D., Duboka, Č.: Prediction of automotive friction material characteristics using artificial neural networks-cold performance. Wear 261, 269–282 (2006)CrossRef Aleksendric, D., Duboka, Č.: Prediction of automotive friction material characteristics using artificial neural networks-cold performance. Wear 261, 269–282 (2006)CrossRef
29.
Zurück zum Zitat Marín, L., Trias, D., Badalló, P., et al.: Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms. Compos. Struct. 94, 3321–3326 (2012)CrossRef Marín, L., Trias, D., Badalló, P., et al.: Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms. Compos. Struct. 94, 3321–3326 (2012)CrossRef
30.
Zurück zum Zitat Aleksendrić, D.: Neural network prediction of brake friction materials wear. Wear 268, 117–125 (2010)CrossRef Aleksendrić, D.: Neural network prediction of brake friction materials wear. Wear 268, 117–125 (2010)CrossRef
31.
Zurück zum Zitat Cook, D.F., Ragsdale, C.T., Major, R.L.: Combining a neural network with a genetic algorithm for process parameter optimization. Eng. Appl. Artif. Intell. 13, 391–396 (2000)CrossRef Cook, D.F., Ragsdale, C.T., Major, R.L.: Combining a neural network with a genetic algorithm for process parameter optimization. Eng. Appl. Artif. Intell. 13, 391–396 (2000)CrossRef
32.
Zurück zum Zitat Srinivasu, D.S., Ramesh Babu, N.: A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Appl. Soft Comput. J. 8, 809–819 (2008)CrossRef Srinivasu, D.S., Ramesh Babu, N.: A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Appl. Soft Comput. J. 8, 809–819 (2008)CrossRef
33.
Zurück zum Zitat Rai, N., Pitchumani, R.: Rapid cure simulation using artificial neural networks. Compos. Part A Appl. Sci. Manuf. 28, 847–859 (1997)CrossRef Rai, N., Pitchumani, R.: Rapid cure simulation using artificial neural networks. Compos. Part A Appl. Sci. Manuf. 28, 847–859 (1997)CrossRef
34.
Zurück zum Zitat Rai, N., Pitchumani, R.: Optimal cure cycles for the fabrication of thermosetting-matrix composites. Polym. Compos. 18, 566–581 (1997)CrossRef Rai, N., Pitchumani, R.: Optimal cure cycles for the fabrication of thermosetting-matrix composites. Polym. Compos. 18, 566–581 (1997)CrossRef
35.
Zurück zum Zitat Jahromi, P.E., Shojaei, A., Reza Pishvaie, S.M.: Prediction and optimization of cure cycle of thick fiber-reinforced composite parts using dynamic artificial neural networks. J. Reinf. Plast. Compos. 31, 1201–1215 (2012)CrossRef Jahromi, P.E., Shojaei, A., Reza Pishvaie, S.M.: Prediction and optimization of cure cycle of thick fiber-reinforced composite parts using dynamic artificial neural networks. J. Reinf. Plast. Compos. 31, 1201–1215 (2012)CrossRef
36.
Zurück zum Zitat Carlone, P., Aleksendrić, D., Ćirović, V., et al.: Meta-modelling of the curing process of thermoset matrix composites by means of a FEM–ANN approach. Compos. Part B Eng. 67, 441–448 (2014)CrossRef Carlone, P., Aleksendrić, D., Ćirović, V., et al.: Meta-modelling of the curing process of thermoset matrix composites by means of a FEM–ANN approach. Compos. Part B Eng. 67, 441–448 (2014)CrossRef
37.
Zurück zum Zitat Aleksendrić D, Carlone P. Soft Computing in the Design and Manufacturing of Composite Materials. Elsevier, 2015, p. 61–289. Aleksendrić D, Carlone P. Soft Computing in the Design and Manufacturing of Composite Materials. Elsevier, 2015, p. 61–289.
38.
Zurück zum Zitat Baran, I., Tutum, C.C., Nielsen, M.W., et al.: Process induced residual stresses and distortions in pultrusion. Compos. Part B Eng. 51, 148–161 (2013)CrossRef Baran, I., Tutum, C.C., Nielsen, M.W., et al.: Process induced residual stresses and distortions in pultrusion. Compos. Part B Eng. 51, 148–161 (2013)CrossRef
39.
Zurück zum Zitat Varol, T., Canakci, A., Ozsahin, S.: Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024-B4C composites produced by powder metallurgy. Compos. Part B 54, 224–233 (2013)CrossRef Varol, T., Canakci, A., Ozsahin, S.: Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024-B4C composites produced by powder metallurgy. Compos. Part B 54, 224–233 (2013)CrossRef
40.
Zurück zum Zitat Tofigh, A.A., Rahimipour, M.R., Shabani, O., Davami, P.: Application of the combined neuro-computing, fuzzy logic and swarm intelligence for optimization of compocast nanocomposites. J. Compos. Mater. 49, 1653–1663 (2015)CrossRef Tofigh, A.A., Rahimipour, M.R., Shabani, O., Davami, P.: Application of the combined neuro-computing, fuzzy logic and swarm intelligence for optimization of compocast nanocomposites. J. Compos. Mater. 49, 1653–1663 (2015)CrossRef
Metadaten
Titel
Optimization of the Temperature-Time Curve for the Curing Process of Thermoset Matrix Composites
verfasst von
Dragan Aleksendrić
Pierpaolo Carlone
Velimir Ćirović
Publikationsdatum
01.10.2016
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 5/2016
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-016-9499-y

Weitere Artikel der Ausgabe 5/2016

Applied Composite Materials 5/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.