Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Strength of Materials 2/2022

13.06.2022

Optimization of the Welding Properties of Friction Stir Weld Butt Joints Using the Response Surface Method Based on Taguchi’s Design

verfasst von: C. Y. Zhang, Q. D. Chen, M. D. Jean

Erschienen in: Strength of Materials | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The present study aims to optimize friction stir welding (FSW) using statistical tools, thereby improving the mechanical properties of butt welds and achieving the desired butt welds for practical applications, such as arts of traditional handicraft and metal sculpture products. The influence of friction stir welding parameters on butt welds was determined by the orthogonal array test and variance analysis. The pin length, dwell time, tool rotational speed, and traverse speed were found to be highly significant factors of the butt welds. In addition, the response surface method (RSM) was used to construct the model from the data of the orthogonal array experiment run using the significant factor application via Taguchi’s design. The experimental results showed that the mechanical properties of butt welds were enhanced by FSW, and the strength of butt welds reached 91%. Furthermore, the fractured properties showed a fine recrystallized grain with fewer defects or imperfections, thereby improving the workability. This was of great significance to the structural safety of large-scale metal sculptures and the pursuit of precision of handicraft products. Based on the tensile strength regression models of friction welding, the linear, interactive, and quadratic models were established, and the quadratic model with 3D contours of the tensile behavior was further developed. The results showed that the predicted values of RSM for butt weld tensile properties were very close to the experimental data, which proved the advisability and availability of RSM based on Taguchi’s design in improving the mechanical properties of friction stir welds.
Literatur
1.
Zurück zum Zitat N. T. Kiimbharand and K. Bhaniimiirthy, “Friction stir welding of A1 6061 alloy,” Asian J. Exp. Sci., 22, No. 2, 63–74 (2008). N. T. Kiimbharand and K. Bhaniimiirthy, “Friction stir welding of A1 6061 alloy,” Asian J. Exp. Sci., 22, No. 2, 63–74 (2008).
2.
Zurück zum Zitat R. S. Mishra and Z. Y. Ma, “Friction stirring welding and processing,” Mater. Sci. Eng., R50, 1–78 (2005). CrossRef R. S. Mishra and Z. Y. Ma, “Friction stirring welding and processing,” Mater. Sci. Eng., R50, 1–78 (2005). CrossRef
3.
Zurück zum Zitat Z. Y. Ma, “Friction stir processing technology: a review,” Metall. Mater. Trans. A, 39, 642–658 (2008). CrossRef Z. Y. Ma, “Friction stir processing technology: a review,” Metall. Mater. Trans. A, 39, 642–658 (2008). CrossRef
4.
Zurück zum Zitat C. G. Rhodes, M. W. Mahoney, W. H. Bingel, et al., “Effects of friction stir welding on microstructure of 7075 aluminum,” Scripta Mater., 36, No. l, 69–75(1997). CrossRef C. G. Rhodes, M. W. Mahoney, W. H. Bingel, et al., “Effects of friction stir welding on microstructure of 7075 aluminum,” Scripta Mater., 36, No. l, 69–75(1997). CrossRef
5.
Zurück zum Zitat H. Jin, S. Saimoto, M. Ball, et al., “Characterisation of microstructure and texture in friction stir welding joints of 5754 and 5182 aluminum alloy sheets,” Mater. Sci. Technol., 17, 1605–1614 (2001). CrossRef H. Jin, S. Saimoto, M. Ball, et al., “Characterisation of microstructure and texture in friction stir welding joints of 5754 and 5182 aluminum alloy sheets,” Mater. Sci. Technol., 17, 1605–1614 (2001). CrossRef
6.
Zurück zum Zitat Y. S. Sato, M. Urate, H. Kokawa, et al. “Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys,” Mater. Sci. Eng. A, 354, 298–305 (2003). CrossRef Y. S. Sato, M. Urate, H. Kokawa, et al. “Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys,” Mater. Sci. Eng. A, 354, 298–305 (2003). CrossRef
7.
Zurück zum Zitat W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, “The feasibility of friction stir welding steel,” Sci. Technol. Weld. Joi., 4, No. 6, 365–372 (1999). CrossRef W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, “The feasibility of friction stir welding steel,” Sci. Technol. Weld. Joi., 4, No. 6, 365–372 (1999). CrossRef
8.
Zurück zum Zitat W. M. Thomas, E. D. Nicholas, E. R. Watts, et al., “Friction based welding technology for aluminum,” in: TWI Ltd, Granta Park, Great Abington, Cambridge, CB16AL, UK. Paper presented at 8th Int. Conf. on Aluminum Alloys, 2nd to 5th July, 2002. W. M. Thomas, E. D. Nicholas, E. R. Watts, et al., “Friction based welding technology for aluminum,” in: TWI Ltd, Granta Park, Great Abington, Cambridge, CB16AL, UK. Paper presented at 8th Int. Conf. on Aluminum Alloys, 2nd to 5th July, 2002.
9.
Zurück zum Zitat Y. Li, L. E. Murr, and J. C. McClure, “Flow visualization and residual microstructures with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mater. Sci. Eng. A, 271, 213–223 (1999). CrossRef Y. Li, L. E. Murr, and J. C. McClure, “Flow visualization and residual microstructures with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mater. Sci. Eng. A, 271, 213–223 (1999). CrossRef
10.
Zurück zum Zitat Y. S. Sato, F. Yamashita, Y. Sugiura, et al., “FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy,” Scripta Mater., 50, 365–369 (2004). CrossRef Y. S. Sato, F. Yamashita, Y. Sugiura, et al., “FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy,” Scripta Mater., 50, 365–369 (2004). CrossRef
11.
Zurück zum Zitat T. S. Srivatsan, S. Vasudevan, and L. Park, “The tensile deformation and fracture behavior of Friction Stir Welded aluminum alloy 2024,” Mater. Sci. Eng. A, 466, Nos. 1–2, 235–245 (2007). CrossRef T. S. Srivatsan, S. Vasudevan, and L. Park, “The tensile deformation and fracture behavior of Friction Stir Welded aluminum alloy 2024,” Mater. Sci. Eng. A, 466, Nos. 1–2, 235–245 (2007). CrossRef
12.
Zurück zum Zitat H. Liu, H. Fujii, M. Maeda, et al., “Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy,” J. Mater. Sci. Lett., 22, 1061–1063 (2003). CrossRef H. Liu, H. Fujii, M. Maeda, et al., “Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy,” J. Mater. Sci. Lett., 22, 1061–1063 (2003). CrossRef
13.
Zurück zum Zitat G. Liu, L. E. Murr, C. S. Niou, et al., “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum,” Scripta Mater., 37, 355–361 (1997). CrossRef G. Liu, L. E. Murr, C. S. Niou, et al., “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum,” Scripta Mater., 37, 355–361 (1997). CrossRef
14.
Zurück zum Zitat W. B. Lee and S. B. Jung, “The joint properties of copper by friction stir welding,” Mater. Lett., 58, 1041–1046 (2004). CrossRef W. B. Lee and S. B. Jung, “The joint properties of copper by friction stir welding,” Mater. Lett., 58, 1041–1046 (2004). CrossRef
15.
Zurück zum Zitat K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J. Mater. Sci., 37, 473–480 (2002). CrossRef K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J. Mater. Sci., 37, 473–480 (2002). CrossRef
16.
Zurück zum Zitat H. B. Chen, K. Yan, T. Lin, et al., “The investigation of typical welding defects for 5456 aluminum alloy friction stir welds,” Mater. Sci. Eng. A, 433, 64–69 (2006). CrossRef H. B. Chen, K. Yan, T. Lin, et al., “The investigation of typical welding defects for 5456 aluminum alloy friction stir welds,” Mater. Sci. Eng. A, 433, 64–69 (2006). CrossRef
17.
Zurück zum Zitat K. N. Krishnan, “On the formation of onion rings in friction stir welds,” Mater. Sci. Eng. A, 327, 246–251 (2002). CrossRef K. N. Krishnan, “On the formation of onion rings in friction stir welds,” Mater. Sci. Eng. A, 327, 246–251 (2002). CrossRef
18.
Zurück zum Zitat S. Lim, S. Kim, C. G. Lee, et al., “Tensile behavior of friction-stir-welded al 6061-T651,” Metall. Mater. Trans. A, 35, 2829–2835 (2004). CrossRef S. Lim, S. Kim, C. G. Lee, et al., “Tensile behavior of friction-stir-welded al 6061-T651,” Metall. Mater. Trans. A, 35, 2829–2835 (2004). CrossRef
19.
Zurück zum Zitat H. Liu, M. Maeda, H. Fujii, et al., “Tensile properties and fracture locations of friction-stir welded joints of 1050-H24 aluminum alloy,” J. Mater. Sci. Lett., 22, 41–43 (2013). CrossRef H. Liu, M. Maeda, H. Fujii, et al., “Tensile properties and fracture locations of friction-stir welded joints of 1050-H24 aluminum alloy,” J. Mater. Sci. Lett., 22, 41–43 (2013). CrossRef
20.
Zurück zum Zitat W. B. Lee, “Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding,” Mater. Trans., 45, No. 5, 1700–1705 (2004). CrossRef W. B. Lee, “Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding,” Mater. Trans., 45, No. 5, 1700–1705 (2004). CrossRef
21.
Zurück zum Zitat K. Elangovan and V. Balasubramanian, “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminum alloy,” J. Mater. Sci. Eng. A, 459, 7–18 (2007). CrossRef K. Elangovan and V. Balasubramanian, “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminum alloy,” J. Mater. Sci. Eng. A, 459, 7–18 (2007). CrossRef
22.
Zurück zum Zitat A. A. Zadpoor, J. Sinke, R. Benedictus, et al., “Mechanical properties and microstructure of friction-stir welded tailor-made blanks,” Mater. Sci. Eng. A, 494, 281–290 (2008). CrossRef A. A. Zadpoor, J. Sinke, R. Benedictus, et al., “Mechanical properties and microstructure of friction-stir welded tailor-made blanks,” Mater. Sci. Eng. A, 494, 281–290 (2008). CrossRef
23.
Zurück zum Zitat P. J. Ramulu, R. Ganesh Narayanan, S. V. Kailas, et al., “Internal defect and process parameter analysis during friction-stir welding of Al 6061 sheets,” Int. J. Adv. Manuf. Tech., 65, 1515–1528 (2013). CrossRef P. J. Ramulu, R. Ganesh Narayanan, S. V. Kailas, et al., “Internal defect and process parameter analysis during friction-stir welding of Al 6061 sheets,” Int. J. Adv. Manuf. Tech., 65, 1515–1528 (2013). CrossRef
24.
Zurück zum Zitat B. T. Gibson, D. H. Lammlein, T. J. Prater, et al., “Friction stir welding: process, automation, and control,” J. Manuf. Process., 16, 56–73 (2014). CrossRef B. T. Gibson, D. H. Lammlein, T. J. Prater, et al., “Friction stir welding: process, automation, and control,” J. Manuf. Process., 16, 56–73 (2014). CrossRef
25.
Zurück zum Zitat B. T. Lin, M. D. Jean, and J. H. Chou, “Using response surface methodology for optimizing deposited partially stabilized zirconia in plasma spraying,” Appl. Surf. Sci., 253, 3254–3262 (2007). CrossRef B. T. Lin, M. D. Jean, and J. H. Chou, “Using response surface methodology for optimizing deposited partially stabilized zirconia in plasma spraying,” Appl. Surf. Sci., 253, 3254–3262 (2007). CrossRef
26.
Zurück zum Zitat D. C. Montgomery, “Using fractional factorial designs for Robust Design process development,” Qual. Eng., 3, No. 2, 193–205 (1990). CrossRef D. C. Montgomery, “Using fractional factorial designs for Robust Design process development,” Qual. Eng., 3, No. 2, 193–205 (1990). CrossRef
27.
Zurück zum Zitat T. H. Chien, M. D. Jean, M. H. Lu, et al. “Application of response surface methodology for robustness of responses of yttria stabilized zirconia coatings,” J. Chinese Inst. Ind. Eng., 272, No. 2, 90–102 (2010). T. H. Chien, M. D. Jean, M. H. Lu, et al. “Application of response surface methodology for robustness of responses of yttria stabilized zirconia coatings,” J. Chinese Inst. Ind. Eng., 272, No. 2, 90–102 (2010).
28.
Zurück zum Zitat R. H. Myers, and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John-Wiley & Sons, New York (2006). R. H. Myers, and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John-Wiley & Sons, New York (2006).
29.
Zurück zum Zitat S. Rajakumar, and V. Balasubramanian, “Establishing relationship between mechanical properties of aluminium alloys and optimized friction stir welding process parameters,” Mater. Design, 40, 17–35 (2012). CrossRef S. Rajakumar, and V. Balasubramanian, “Establishing relationship between mechanical properties of aluminium alloys and optimized friction stir welding process parameters,” Mater. Design, 40, 17–35 (2012). CrossRef
30.
Zurück zum Zitat N. Kamp, A. P. Reynolds, and J. D. Robson, “Modelling of 7050 aluminium alloy friction stir welding,” Sci. Technol. Weld. Joi., 14, No. 7, 589–596 (2009). CrossRef N. Kamp, A. P. Reynolds, and J. D. Robson, “Modelling of 7050 aluminium alloy friction stir welding,” Sci. Technol. Weld. Joi., 14, No. 7, 589–596 (2009). CrossRef
31.
Zurück zum Zitat S. Rajakumar, C. Muralidharan, and V. Balasubramanian, “Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints,” Mater. Design, 32, 2878–2890 (2011). CrossRef S. Rajakumar, C. Muralidharan, and V. Balasubramanian, “Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints,” Mater. Design, 32, 2878–2890 (2011). CrossRef
32.
Zurück zum Zitat Y. Bozkurt and M. K. Bilici, “Application of Taguchi approach to optimize of FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys,” Mater. Design, 51, 513–521 (2013). CrossRef Y. Bozkurt and M. K. Bilici, “Application of Taguchi approach to optimize of FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys,” Mater. Design, 51, 513–521 (2013). CrossRef
33.
Zurück zum Zitat S. Rajakumar and V. Balasubramanian, “Establishing relationship between mechanical properties of aluminium alloys and optimized friction stir welding process parameters,” Mater. Design, 40, 17–35 (2012). CrossRef S. Rajakumar and V. Balasubramanian, “Establishing relationship between mechanical properties of aluminium alloys and optimized friction stir welding process parameters,” Mater. Design, 40, 17–35 (2012). CrossRef
34.
Zurück zum Zitat N. P. Patel, P. Parlikar, R. S. Dhari, et al., “Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint,” J. Manuf. Process., 47, 98–109 (2019). CrossRef N. P. Patel, P. Parlikar, R. S. Dhari, et al., “Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint,” J. Manuf. Process., 47, 98–109 (2019). CrossRef
35.
Zurück zum Zitat M. Grujicic, G. Arakere, C. F. Yen, et al., “Computational investigation of hardness evolution during friction stir welding of AA5083 and AA2139 aluminum alloys,” J. Mater. Eng. Perform., 20, No. 7, 1097–1108 (2011). CrossRef M. Grujicic, G. Arakere, C. F. Yen, et al., “Computational investigation of hardness evolution during friction stir welding of AA5083 and AA2139 aluminum alloys,” J. Mater. Eng. Perform., 20, No. 7, 1097–1108 (2011). CrossRef
36.
Zurück zum Zitat A. R. Raja, M. Vashista, and M. Z. K. Yusufzai, “Estimation of material properties using hysteresis loop analysis in friction stir welded steel plate,” J. Alloy. Compd., 814, No. 25, 152–265 (2020). A. R. Raja, M. Vashista, and M. Z. K. Yusufzai, “Estimation of material properties using hysteresis loop analysis in friction stir welded steel plate,” J. Alloy. Compd., 814, No. 25, 152–265 (2020).
37.
Zurück zum Zitat H. J. Zhang, H. J. Liu, J. L. Song, et al., “Micro-characteristic and formation mechanism of layered band structure in non-weld-thinning friction stir welded 7N01 aluminum alloy,” J. Manuf. Process., 50, 154–160 (2020). CrossRef H. J. Zhang, H. J. Liu, J. L. Song, et al., “Micro-characteristic and formation mechanism of layered band structure in non-weld-thinning friction stir welded 7N01 aluminum alloy,” J. Manuf. Process., 50, 154–160 (2020). CrossRef
38.
Zurück zum Zitat D. Sunilkumar, S. Muthukumaran, M. Vasudevan, et al., “Tool rotational speed variant response on the evolution of microstructure and its significance on mechanical properties of friction stir welded 9Cr-1Mo steel,” J. Mater. Process. Tech., 278, 116536 (2020). CrossRef D. Sunilkumar, S. Muthukumaran, M. Vasudevan, et al., “Tool rotational speed variant response on the evolution of microstructure and its significance on mechanical properties of friction stir welded 9Cr-1Mo steel,” J. Mater. Process. Tech., 278, 116536 (2020). CrossRef
39.
Zurück zum Zitat A. M. Sadoun, A. Wagih, A. Fathy, et al., “Effect of tool pin side area ratio on temperature distribution in friction stir welding,” Results Phys., 15, 102814 (2019). CrossRef A. M. Sadoun, A. Wagih, A. Fathy, et al., “Effect of tool pin side area ratio on temperature distribution in friction stir welding,” Results Phys., 15, 102814 (2019). CrossRef
Metadaten
Titel
Optimization of the Welding Properties of Friction Stir Weld Butt Joints Using the Response Surface Method Based on Taguchi’s Design
verfasst von
C. Y. Zhang
Q. D. Chen
M. D. Jean
Publikationsdatum
13.06.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00400-8

Weitere Artikel der Ausgabe 2/2022

Strength of Materials 2/2022 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.