Skip to main content
Erschienen in:

13.07.2023 | Original Paper

Optimized deep learning strategy for estimation of state of charge at different C-rate with varying temperature

verfasst von: Pooja Kumari, Ashutosh Kumar Singh, Niranjan Kumar

Erschienen in: Electrical Engineering | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to advancements in e-mobility technology, more and more people are opting to use electric vehicles. As there is a lack of a backup power supply, energy storage device is especially important for onboard systems. So, battery management systems become an important aspect for these energy storage devices. State-of-charge (SoC) estimation is a vitally significant assessment index in BMS because it is one of the most critical attributes that represents the working state of power batteries in EVs. In addition to the quick display of the remaining battery capacity to the user, accurate knowledge of SoC exerts further control over the charging/discharging process, which may be used to enhance battery life. This can be done in order to increase the longevity of the battery. According to the findings of this study, the error while estimating the SoC has been reduced to near about zero. The effect of resistance, temperature and C-rate on SoC has been also considered in this study. These findings show that the resistance is proportional to SoC below 80%, and after that, it becomes nonlinear. The SoC calculation using optimized deep learning strategy is proposed in this study. This approach helps to limit the margin of error in the calculation of SoC. It has also taken into account the occurrence of changes in SoC as a result of the changing C-rate, temperature, and resistance. Hence, this study helps to offset the negative effects of inaccurate SoC prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
10.
Zurück zum Zitat Sun D et al (2021) State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. Energy 214:119025CrossRef Sun D et al (2021) State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. Energy 214:119025CrossRef
14.
Zurück zum Zitat Li Y et al (2020) State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis. Appl Energy 277:115504CrossRef Li Y et al (2020) State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis. Appl Energy 277:115504CrossRef
Metadaten
Titel
Optimized deep learning strategy for estimation of state of charge at different C-rate with varying temperature
verfasst von
Pooja Kumari
Ashutosh Kumar Singh
Niranjan Kumar
Publikationsdatum
13.07.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 6/2023
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01925-0