Skip to main content
Erschienen in: Computational Mechanics 1/2018

18.09.2017 | Original Paper

Optimized growth and reorientation of anisotropic material based on evolution equations

verfasst von: Dustin R. Jantos, Philipp Junker, Klaus Hackl

Erschienen in: Computational Mechanics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton’s principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this previous publication we denoted the regularization parameter by \(\alpha \) and the viscosity for the compliance parameter by r instead of the present notations \(\beta _\chi \) and \(r_{\chi }\), respectively.
 
2
Employed software: ParaView. The isovolume filter displays every point of a given scalar as solid if its value ranges within a given interval. To display the density field in ParaView, we extrapolated the density values \(\rho = 1/f(\chi )\) within the Gaußpoints to the nodal points. Thus, the density value within a node between two neighboring Gaußpoint densities \(\rho = \{0,1\}\) will become 0.5, which matches the chosen isovolume filter.
 
Literatur
4.
Zurück zum Zitat Hajela P, Lee E, Lin C-Y (1993) Genetic algorithms in structural topology optimization. In: Topology design of structures. Springer, pp 117–133 Hajela P, Lee E, Lin C-Y (1993) Genetic algorithms in structural topology optimization. In: Topology design of structures. Springer, pp 117–133
9.
Zurück zum Zitat Blank L, Garcke H, Sarbu L, Srisupattarawanit T, Styles V, Voigt A (2012) Phase-field approaches to structural topology optimization. In: Leugering G. et al. (eds) Constrained optimization and optimal control for partial differential equations. International Series of Numerical Mathematics, vol 160. Springer, Basel, pp 245–256 Blank L, Garcke H, Sarbu L, Srisupattarawanit T, Styles V, Voigt A (2012) Phase-field approaches to structural topology optimization. In: Leugering G. et al. (eds) Constrained optimization and optimal control for partial differential equations. International Series of Numerical Mathematics, vol 160. Springer, Basel, pp 245–256
10.
Zurück zum Zitat Harrigan TP, Hamilton JJ (1994) Bone remodeling and structural optimization. J Biomech 27(3):323–328CrossRef Harrigan TP, Hamilton JJ (1994) Bone remodeling and structural optimization. J Biomech 27(3):323–328CrossRef
11.
Zurück zum Zitat Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. Comput Mech 32(1–2):71–88CrossRefMATH Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. Comput Mech 32(1–2):71–88CrossRefMATH
12.
Zurück zum Zitat Waffenschmidt T, Menzel A (2012) Application of an anisotropic growth and remodelling formulation to computational structural design. Mech Res Commun 42:77–86CrossRef Waffenschmidt T, Menzel A (2012) Application of an anisotropic growth and remodelling formulation to computational structural design. Mech Res Commun 42:77–86CrossRef
13.
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
14.
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH
15.
Zurück zum Zitat Rozvany G, Zhou M (1991) The coc algorithm, part i: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89(1):281–308CrossRef Rozvany G, Zhou M (1991) The coc algorithm, part i: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89(1):281–308CrossRef
17.
Zurück zum Zitat Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef
18.
Zurück zum Zitat Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetCrossRefMATH Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetCrossRefMATH
19.
Zurück zum Zitat Haber R, Pedersen P, Taylor J (1994) An analytical model to predict optimal material properties in the context of optimal structural design. Urbana 51:61801MATH Haber R, Pedersen P, Taylor J (1994) An analytical model to predict optimal material properties in the context of optimal structural design. Urbana 51:61801MATH
20.
21.
Zurück zum Zitat Haslinger J, Kocvara M, Leugering G, Stingl M (2010) Multidisciplinary free material optimization. SIAM J Appl Math 70(7):2709–2728MathSciNetCrossRefMATH Haslinger J, Kocvara M, Leugering G, Stingl M (2010) Multidisciplinary free material optimization. SIAM J Appl Math 70(7):2709–2728MathSciNetCrossRefMATH
23.
Zurück zum Zitat Nomura T, Dede EM, Lee J, Yamasaki S, Matsumori T, Kawamoto A, Kikuchi N (2015) General topology optimization method with continuous and discrete orientation design using isoparametric projection. Int J Numer Meth Eng 101(8):571–605MathSciNetCrossRefMATH Nomura T, Dede EM, Lee J, Yamasaki S, Matsumori T, Kawamoto A, Kikuchi N (2015) General topology optimization method with continuous and discrete orientation design using isoparametric projection. Int J Numer Meth Eng 101(8):571–605MathSciNetCrossRefMATH
25.
Zurück zum Zitat Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289CrossRef Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289CrossRef
26.
Zurück zum Zitat Li S, Atluri S (2008) The mlpg mixed collocation method for material orientation and topology optimization of anisotropic solids and structures. Comput Model Eng Sci 30(1):37–56 Li S, Atluri S (2008) The mlpg mixed collocation method for material orientation and topology optimization of anisotropic solids and structures. Comput Model Eng Sci 30(1):37–56
27.
Zurück zum Zitat Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH
28.
Zurück zum Zitat Zhou K-M, Li X (2006) Topology optimization of structures under multiple load cases using a fiber-reinforced composite material model. Comput Mech 38(2):163–170CrossRefMATH Zhou K-M, Li X (2006) Topology optimization of structures under multiple load cases using a fiber-reinforced composite material model. Comput Mech 38(2):163–170CrossRefMATH
29.
Zurück zum Zitat Gea H, Luo J (2004) On the stress-based and strain-based methods for predicting optimal orientation of orthotropic materials. Struct Multidiscip Optim 26(3–4):229–234CrossRef Gea H, Luo J (2004) On the stress-based and strain-based methods for predicting optimal orientation of orthotropic materials. Struct Multidiscip Optim 26(3–4):229–234CrossRef
30.
Zurück zum Zitat Junker P, Hackl KA (2015) A variational growth approach to topology optimization. Struct Multidiscip Optim 52(2):293–304 Junker P, Hackl KA (2015) A variational growth approach to topology optimization. Struct Multidiscip Optim 52(2):293–304
31.
Zurück zum Zitat Junker P, Hackl K (2016) A discontinuous phase field approach to variational growth-based topology optimization. Struct Multidiscip Optim 54(1):81–94MathSciNetCrossRef Junker P, Hackl K (2016) A discontinuous phase field approach to variational growth-based topology optimization. Struct Multidiscip Optim 54(1):81–94MathSciNetCrossRef
32.
Zurück zum Zitat Jantos DR, Junker P, Hackl K (2016) An evolutionary topology optimization approach with variationally controlled growth. Comput Methods Appl Mech Eng 310:780–801MathSciNetCrossRef Jantos DR, Junker P, Hackl K (2016) An evolutionary topology optimization approach with variationally controlled growth. Comput Methods Appl Mech Eng 310:780–801MathSciNetCrossRef
33.
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinMATH
34.
Zurück zum Zitat Junker P, Makowski J, Hackl K (2014) The principle of the minimum of the dissipation potential for non-isothermal processes. Contin Mech Thermodyn 26(3):259–268 Junker P, Makowski J, Hackl K (2014) The principle of the minimum of the dissipation potential for non-isothermal processes. Contin Mech Thermodyn 26(3):259–268
35.
Zurück zum Zitat Junker P (2014) A novel approach to representative orientation distribution functions for modeling and simulation of polycrystalline shape memory alloys. Int J Numer Meth Eng 98(11):799–818MathSciNetCrossRefMATH Junker P (2014) A novel approach to representative orientation distribution functions for modeling and simulation of polycrystalline shape memory alloys. Int J Numer Meth Eng 98(11):799–818MathSciNetCrossRefMATH
36.
Zurück zum Zitat Junker P (2015) Benefits of an energy-based material model during industrial engineering of sma. In: The international conference on shape memory and superelastic technologies (SMST), 18–22 May 2015. Asm Junker P (2015) Benefits of an energy-based material model during industrial engineering of sma. In: The international conference on shape memory and superelastic technologies (SMST), 18–22 May 2015. Asm
37.
38.
Zurück zum Zitat Waffenschmidt T, Menzel A, Kuhl E (2012) Anisotropic density growth of bone–a computational micro-sphere approach. Int J Solids Struct 49(14):1928–1946CrossRef Waffenschmidt T, Menzel A, Kuhl E (2012) Anisotropic density growth of bone–a computational micro-sphere approach. Int J Solids Struct 49(14):1928–1946CrossRef
39.
Zurück zum Zitat Junker P, Schwarz S, Makowski J, Hackl K (2017) A relaxation-based approach to damage modeling. Contin Mech Thermodyn 29(1):291–310MathSciNetCrossRefMATH Junker P, Schwarz S, Makowski J, Hackl K (2017) A relaxation-based approach to damage modeling. Contin Mech Thermodyn 29(1):291–310MathSciNetCrossRefMATH
40.
Zurück zum Zitat Cowin SC, Mehrabadi MM (1987) On the identification of material symmetry for anisotropic elastic materials. Q J Mech Appl Math 40(Part 4):451–476 Cowin SC, Mehrabadi MM (1987) On the identification of material symmetry for anisotropic elastic materials. Q J Mech Appl Math 40(Part 4):451–476
41.
42.
Zurück zum Zitat Hackl K (1999) On the representation of anisotropic elastic materials by symmetric irreducible tensors. Contin Mech Thermodyn 11(6):353–369MathSciNetCrossRefMATH Hackl K (1999) On the representation of anisotropic elastic materials by symmetric irreducible tensors. Contin Mech Thermodyn 11(6):353–369MathSciNetCrossRefMATH
Metadaten
Titel
Optimized growth and reorientation of anisotropic material based on evolution equations
verfasst von
Dustin R. Jantos
Philipp Junker
Klaus Hackl
Publikationsdatum
18.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1483-3

Weitere Artikel der Ausgabe 1/2018

Computational Mechanics 1/2018 Zur Ausgabe

Neuer Inhalt