Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

15.05.2018 | Ausgabe 6/2018

Peer-to-Peer Networking and Applications 6/2018

Optimized peer to peer QSPR prediction of enthalpy of formation using outlier detection and subset selection

Zeitschrift:
Peer-to-Peer Networking and Applications > Ausgabe 6/2018
Autoren:
B. Firdaus Begam, J. Satheesh Kumar, Gyoo-Soo Chae
Wichtige Hinweise
This article is part of the Topical Collection: Special Issue on Convergence P2P Cloud Computing
Guest Editor: Jung-Soo Han

Abstract

Quantitative Structure Property Relationship (QSPR) approach provides a model to understand the property or activity of a molecule by identifying the relationship with its chemical structure. Accurate identification of property of a molecule has higher influence of modern drug discovery system. Hence, development of an efficient method to identify the molecule property or activity is becoming mandatory component in drug design. Modern drug discovery system involves cluster networks since drug design process can be enhanced with the support of peer to peer networks. Few Molecule will have high dimensional structure and descriptor information where these information can be efficiently handled by cluster networks. This research work visualizes existing bench marking models based on Polynomial Regression (PR), Principal Component Regression (PCR) and Partial Least Square Regression (PLSR) with respect to fitted response and prediction. An optimized QSPR model (FDROL) with fuzzy minimum redundancy maximum relevance (FmRMR) data reduction (FDR) and outlier detection (OL) was proposed. The influences of topological descriptor to predict the physicochemical property of hydrocarbons have been determined. The dataset has been analyzed by proposed method using polynomial regression (PRFDROL), principal component regression (PCFDROL) and partial least square regression (PLFDROL) to predict the enthalpy of formation of hydrocarbons. The model was validated with high correlation coefficient (r, r2, adjr2, F) and lower standard error (se) which shows that the model has good predictive ability. The squared correlation coefficient (r2) for preprocessed data using PR, PCR and PLSR were obtained as 1, 0.98392 and 0.9839 which were better predicted and fitted responses compare with existing methods. The optimized QSPR model with PR shows best fit to predict enthalpy of formation of hydrocarbons.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2018

Peer-to-Peer Networking and Applications 6/2018 Zur Ausgabe

Premium Partner