Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Optimized Preprocessing Framework for Wrist Pulse Analysis

verfasst von : David Zhang, Wangmeng Zuo, Peng Wang

Erschienen in: Computational Pulse Signal Analysis

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since wrist pulse signals collected by the sensors are often corrupted by artifacts in real situations, many approaches on the wrist pulse preprocessing including pulse denoising and baseline drift removal are introduced for more accurate wrist pulse analysis. However, these scattered methods are incomplete with some limitations when used to preprocess our special pulse data for the clinical applications. This chapter presents a robust signal preprocessing framework for wrist pulse analysis. The cascade filter based on frequency-dependent analysis (FDA) is first introduced to remove the high-frequency noises and to select the significant intervals. Then the curve fitting method is developed to adjust the direction and the baseline drift with minimum signal distortion. Last, the period segmentation and normalization is applied for the feature extraction. The effectiveness of the proposed framework is validated through experiments on actual pulse records with biochemical markers. Both quantitative and qualitative results are given. The results show that the proposed pulse preprocessing framework is effective in extracting more accurate pulse features and practical for wrist pulse analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Lukman, Y. He, and S.-C. Hui, “Computational methods for Traditional Chinese Medicine: A survey,” Computer Methods and Programs in Biomedicine, vol. 88, pp. 283–294, 12, 2007.CrossRef S. Lukman, Y. He, and S.-C. Hui, “Computational methods for Traditional Chinese Medicine: A survey,” Computer Methods and Programs in Biomedicine, vol. 88, pp. 283–294, 12, 2007.CrossRef
2.
Zurück zum Zitat L. Xu, K. Wang, D. Zhang, Y. Li, Z. Wan, and J. Wang, “Objectifying researches on traditional Chinese pulse diagnosis,” in Informatica Medica Slovenica, 2003, pp. 56–63. L. Xu, K. Wang, D. Zhang, Y. Li, Z. Wan, and J. Wang, “Objectifying researches on traditional Chinese pulse diagnosis,” in Informatica Medica Slovenica, 2003, pp. 56–63.
3.
Zurück zum Zitat H. Sorvoja, V. M. Kokko, R. Myllyla, and J. Miettinen, “Use of EMFi as a blood pressure pulse transducer,” Instrumentation and Measurement, IEEE Transactions on, vol. 54, pp. 2505–2512, 2005. H. Sorvoja, V. M. Kokko, R. Myllyla, and J. Miettinen, “Use of EMFi as a blood pressure pulse transducer,” Instrumentation and Measurement, IEEE Transactions on, vol. 54, pp. 2505–2512, 2005.
4.
Zurück zum Zitat M. Nitzan, “Automatic noninvasive measurement of arterial blood pressure,” Instrumentation & Measurement Magazine, IEEE, vol. 14, pp. 32–37, 2011. M. Nitzan, “Automatic noninvasive measurement of arterial blood pressure,” Instrumentation & Measurement Magazine, IEEE, vol. 14, pp. 32–37, 2011.
5.
Zurück zum Zitat C.-H. Luo, Y.-F. Chung, C.-S. Hu, C.-C. Yeh, X.-C. Si, D.-H. Feng, Y.-C. Lee, S.-I. Huang, S.-M. Yeh, C.-H. Liang, “Possibility of quantifying TCM finger-reading sensations: I. Bi-Sensing Pulse Diagnosis Instrument," European Journal of Integrative Medicine, vol. 4, pp. e255-e262, 9, 2012. C.-H. Luo, Y.-F. Chung, C.-S. Hu, C.-C. Yeh, X.-C. Si, D.-H. Feng, Y.-C. Lee, S.-I. Huang, S.-M. Yeh, C.-H. Liang, “Possibility of quantifying TCM finger-reading sensations: I. Bi-Sensing Pulse Diagnosis Instrument," European Journal of Integrative Medicine, vol. 4, pp. e255-e262, 9, 2012.
6.
Zurück zum Zitat P. Wang, W. Zuo, and D. Zhang, “A Compound Pressure Signal Acquisition System for Multichannel Wrist Pulse Signal Analysis,” Instrumentation and Measurement, IEEE Transactions on , vol.63, no.6, pp.1556,1565, June 2014 P. Wang, W. Zuo, and D. Zhang, “A Compound Pressure Signal Acquisition System for Multichannel Wrist Pulse Signal Analysis,” Instrumentation and Measurement, IEEE Transactions on , vol.63, no.6, pp.1556,1565, June 2014
7.
Zurück zum Zitat M. Aboy, J. McNames, T. Tran, D. Tsunami, M. S. Ellenby, and B. Goldstein, “An automatic beat detection algorithm for pressure signals,” Biomedical Engineering, IEEE Transactions on, vol. 52, pp. 1662–1670, 2005.CrossRef M. Aboy, J. McNames, T. Tran, D. Tsunami, M. S. Ellenby, and B. Goldstein, “An automatic beat detection algorithm for pressure signals,” Biomedical Engineering, IEEE Transactions on, vol. 52, pp. 1662–1670, 2005.CrossRef
8.
Zurück zum Zitat H. M. Haqqani, J. B. Morton, and J. M. Kalman, “Using the 12-Lead ECG to Localize the Origin of Atrial and Ventricular Tachycardias: Part 2—Ventricular Tachycardia,” Journal of cardiovascular electrophysiology, vol. 20, pp. 825–832, 2009.CrossRef H. M. Haqqani, J. B. Morton, and J. M. Kalman, “Using the 12-Lead ECG to Localize the Origin of Atrial and Ventricular Tachycardias: Part 2—Ventricular Tachycardia,” Journal of cardiovascular electrophysiology, vol. 20, pp. 825–832, 2009.CrossRef
9.
Zurück zum Zitat D.-Y. Zhang, W.-M. Zuo, D. Zhang, H.-Z. Zhang, and N.-M. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, p. 361, 2010.CrossRef D.-Y. Zhang, W.-M. Zuo, D. Zhang, H.-Z. Zhang, and N.-M. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, p. 361, 2010.CrossRef
10.
Zurück zum Zitat C. T. Lee and L. Y. Wei, “Spectrum analysis of human pulse,” Biomedical Engineering, IEEE Transactions on, pp. 348–352, 1983.CrossRef C. T. Lee and L. Y. Wei, “Spectrum analysis of human pulse,” Biomedical Engineering, IEEE Transactions on, pp. 348–352, 1983.CrossRef
11.
Zurück zum Zitat E. J. Ciaccio and G. M. Drzewiecki, “Tonometric Arterial Pulse Sensor with Noise Cancellation,” Biomedical Engineering, IEEE Transactions on, vol. 55, pp. 2388–2396, 2008. E. J. Ciaccio and G. M. Drzewiecki, “Tonometric Arterial Pulse Sensor with Noise Cancellation,” Biomedical Engineering, IEEE Transactions on, vol. 55, pp. 2388–2396, 2008.
12.
Zurück zum Zitat C. Xia, Y. Li, J. Yan, Y. Wang, H. Yan, R. Guo, et al., “A practical approach to wrist pulse segmentation and single-period average waveform estimation,” in BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on, 2008, pp. 334–338. C. Xia, Y. Li, J. Yan, Y. Wang, H. Yan, R. Guo, et al., “A practical approach to wrist pulse segmentation and single-period average waveform estimation,” in BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on, 2008, pp. 334–338.
13.
Zurück zum Zitat H.-T. Wu, C.-H. Lee, A.-B. Liu, W.-S. Chung, C.-J. Tang, C.-K. Sun, et al., “Arterial stiffness using radial arterial waveforms measured at the wrist as an indicator of diabetic control in the elderly,” Biomedical Engineering, IEEE Transactions on, vol. 58, pp. 243–252, 2011. H.-T. Wu, C.-H. Lee, A.-B. Liu, W.-S. Chung, C.-J. Tang, C.-K. Sun, et al., “Arterial stiffness using radial arterial waveforms measured at the wrist as an indicator of diabetic control in the elderly,” Biomedical Engineering, IEEE Transactions on, vol. 58, pp. 243–252, 2011.
14.
Zurück zum Zitat M. Blanco-Velasco, B. Weng, and K. E. Barner, “ECG signal denoising and baseline wander correction based on the empirical mode decomposition,” Computers in biology and medicine, vol. 38, pp. 1–13, 2008.CrossRef M. Blanco-Velasco, B. Weng, and K. E. Barner, “ECG signal denoising and baseline wander correction based on the empirical mode decomposition,” Computers in biology and medicine, vol. 38, pp. 1–13, 2008.CrossRef
15.
Zurück zum Zitat M. Mneimneh, E. Yaz, M. Johnson, and R. Povinelli, “An adaptive Kalman filter for removing baseline wandering in ECG signals,” in Computers in Cardiology, 2006, 2006, pp. 253–256. M. Mneimneh, E. Yaz, M. Johnson, and R. Povinelli, “An adaptive Kalman filter for removing baseline wandering in ECG signals,” in Computers in Cardiology, 2006, 2006, pp. 253–256.
16.
Zurück zum Zitat L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” Biomedical Engineering, IEEE Transactions on, vol. 52, pp. 1973–1975, 2005.CrossRef L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” Biomedical Engineering, IEEE Transactions on, vol. 52, pp. 1973–1975, 2005.CrossRef
17.
Zurück zum Zitat K. Wang, L. Xu, L. Wang, Z. Li, and Y. Li, “Pulse baseline wander removal using wavelet approximation,” in Computers in Cardiology, 2003, 2003, pp. 605–608. K. Wang, L. Xu, L. Wang, Z. Li, and Y. Li, “Pulse baseline wander removal using wavelet approximation,” in Computers in Cardiology, 2003, 2003, pp. 605–608.
18.
Zurück zum Zitat D. Wang and D. Zhang, “Analysis of pulse waveforms preprocessing,” in Computerized Healthcare (ICCH), 2012 International Conference on, 2012, pp. 175–180. D. Wang and D. Zhang, “Analysis of pulse waveforms preprocessing,” in Computerized Healthcare (ICCH), 2012 International Conference on, 2012, pp. 175–180.
19.
Zurück zum Zitat L. Xu, D. Zhang, K. Wang, N. Li, and X. Wang, “Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter,” Computers in Biology and Medicine, vol. 37, pp. 716–731, 5, 2007.CrossRef L. Xu, D. Zhang, K. Wang, N. Li, and X. Wang, “Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter,” Computers in Biology and Medicine, vol. 37, pp. 716–731, 5, 2007.CrossRef
20.
Zurück zum Zitat Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Wrist pulse signal diagnosis using modified Gaussian models and Fuzzy C-Means classification,” Medical engineering & physics, vol. 31, pp. 1283–1289, 2009.CrossRef Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Wrist pulse signal diagnosis using modified Gaussian models and Fuzzy C-Means classification,” Medical engineering & physics, vol. 31, pp. 1283–1289, 2009.CrossRef
21.
Zurück zum Zitat A. D. S. Ferreira, “Resonance phenomenon during wrist pulse-taking: A stochastic simulation, model-based study of the ‘pressing with one finger’ technique,” Biomedical Signal Processing and Control, vol. 8, pp. 229–236, 5, 2013.CrossRef A. D. S. Ferreira, “Resonance phenomenon during wrist pulse-taking: A stochastic simulation, model-based study of the ‘pressing with one finger’ technique,” Biomedical Signal Processing and Control, vol. 8, pp. 229–236, 5, 2013.CrossRef
22.
Zurück zum Zitat Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Computerized Wrist Pulse Signal Diagnosis Using Modified Auto-Regressive Models,” Journal of Medical Systems, vol. 35, pp. 321–328, 2011.CrossRef Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Computerized Wrist Pulse Signal Diagnosis Using Modified Auto-Regressive Models,” Journal of Medical Systems, vol. 35, pp. 321–328, 2011.CrossRef
23.
Zurück zum Zitat D. Zhang, D. Zhang, and Y. Zheng, “Wavelet based analysis of Doppler ultrasonic wrist-pulse signals,” in BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on, 2008, pp. 539–543. D. Zhang, D. Zhang, and Y. Zheng, “Wavelet based analysis of Doppler ultrasonic wrist-pulse signals,” in BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on, 2008, pp. 539–543.
24.
Zurück zum Zitat L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning,” Information Technology in Biomedicine, IEEE Transactions on, vol. 16, pp. 598–606, 2012. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning,” Information Technology in Biomedicine, IEEE Transactions on, vol. 16, pp. 598–606, 2012.
25.
Zurück zum Zitat R. J. Martis, U. R. Acharya, and L. C. Min, “ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform,” Biomedical Signal Processing and Control, vol. 8, pp. 437–448, 9, 2013.CrossRef R. J. Martis, U. R. Acharya, and L. C. Min, “ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform,” Biomedical Signal Processing and Control, vol. 8, pp. 437–448, 9, 2013.CrossRef
Metadaten
Titel
Optimized Preprocessing Framework for Wrist Pulse Analysis
verfasst von
David Zhang
Wangmeng Zuo
Peng Wang
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4044-3_6