Skip to main content
Erschienen in: Neural Processing Letters 3/2019

26.07.2018

Optimizing Extreme Learning Machine via Generalized Hebbian Learning and Intrinsic Plasticity Learning

verfasst von: Chao Chen, Xinyu Jin, Boyuan Jiang, Lanjuan Li

Erschienen in: Neural Processing Letters | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional extreme learning machine (ELM) has random weights between input layer and hidden layer, this kind of random feature mapping brings non-discriminative feature space and unstable classification accuracy, which greatly limits the performance of the ELM networks. Therefore, to get the well-pleasing input weights, two biologically inspired, unsupervised learning methods were introduced to optimize the traditional ELM networks, namely the generalized hebbian algorithm (GHA) and intrinsic plasticity learning (IPL). The GHA is able to extract the principal components of the input data of arbitrary size, while the IPL tunes the probability density of the neuron’s output towards a desired distribution such as exponential distribution or weber distribution, thereby maximizing the networks information transmission. With the incorporation of the GHA and IPL approach, the optimized ELM networks generates a discriminative feature space and preserves much more characteristic of the input data, accordingly, achieving a better task performance. Based on the above two unsupervised methods, a simple, yet effective hierarchical feature mapping extreme learning machine (HFMELM) is further proposed. With almost no information loss in the layer-wise feature mapping process, the HFMELM is able to learn the high-level representation of the input data. To evaluate the effectiveness of the proposed methods, extensive experiments on several datasets are presented, the results show that the proposed methods significantly outperform the traditional ELM networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6(6):861–867CrossRef Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6(6):861–867CrossRef
2.
Zurück zum Zitat Huang G-B, Babri HA (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9(1):224–229CrossRef Huang G-B, Babri HA (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9(1):224–229CrossRef
3.
Zurück zum Zitat Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on proceedings neural networks, vol 2. IEEE, pp 985–990 Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on proceedings neural networks, vol 2. IEEE, pp 985–990
4.
Zurück zum Zitat Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybern) 42(2):513–529CrossRef Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybern) 42(2):513–529CrossRef
5.
Zurück zum Zitat Liu X, Wang L, Huang G-B, Zhang J, Yin J (2015) Multiple kernel extreme learning machine. Neurocomputing 149:253–264CrossRef Liu X, Wang L, Huang G-B, Zhang J, Yin J (2015) Multiple kernel extreme learning machine. Neurocomputing 149:253–264CrossRef
6.
Zurück zum Zitat Huang G, Song S, Gupta JN, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417CrossRef Huang G, Song S, Gupta JN, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417CrossRef
7.
Zurück zum Zitat Tang J, Deng C, Huang G-B (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821MathSciNetCrossRef Tang J, Deng C, Huang G-B (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821MathSciNetCrossRef
8.
Zurück zum Zitat Liang N-Y, Huang G-B, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Networks 17(6):1411–1423CrossRef Liang N-Y, Huang G-B, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Networks 17(6):1411–1423CrossRef
9.
Zurück zum Zitat Mirza B, Lin Z, Toh K-A (2013) Weighted online sequential extreme learning machine for class imbalance learning. Neural Process Lett 38(3):465–486CrossRef Mirza B, Lin Z, Toh K-A (2013) Weighted online sequential extreme learning machine for class imbalance learning. Neural Process Lett 38(3):465–486CrossRef
10.
Zurück zum Zitat Mirza B, Kok S, Dong F (2016) Multi-layer online sequential extreme learning machine for image classification. In Proceedings of ELM-2015 Volume 1. Springer, Berlin pp 39–49 Mirza B, Kok S, Dong F (2016) Multi-layer online sequential extreme learning machine for image classification. In Proceedings of ELM-2015 Volume 1. Springer, Berlin pp 39–49
11.
Zurück zum Zitat Zong W, Huang G-B (2014) Learning to rank with extreme learning machine. Neural Process Lett 39(2):155–166CrossRef Zong W, Huang G-B (2014) Learning to rank with extreme learning machine. Neural Process Lett 39(2):155–166CrossRef
12.
Zurück zum Zitat Zong W, Huang G-B, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242CrossRef Zong W, Huang G-B, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242CrossRef
13.
14.
Zurück zum Zitat Liu N, Wang H (2010) Ensemble based extreme learning machine. IEEE Signal Process Lett 17(8):754–757CrossRef Liu N, Wang H (2010) Ensemble based extreme learning machine. IEEE Signal Process Lett 17(8):754–757CrossRef
15.
Zurück zum Zitat Iosifidis A, Tefas A, Pitas I (2013) Minimum class variance extreme learning machine for human action recognition. IEEE Trans Circuits Syst Video Technol 23(11):1968–1979CrossRef Iosifidis A, Tefas A, Pitas I (2013) Minimum class variance extreme learning machine for human action recognition. IEEE Trans Circuits Syst Video Technol 23(11):1968–1979CrossRef
16.
Zurück zum Zitat Kasun LLC, Yang Y, Huang G-B, Zhang Z (2016) Dimension reduction with extreme learning machine. IEEE Trans Image Process 25(8):3906–3918MathSciNetCrossRefMATH Kasun LLC, Yang Y, Huang G-B, Zhang Z (2016) Dimension reduction with extreme learning machine. IEEE Trans Image Process 25(8):3906–3918MathSciNetCrossRefMATH
17.
Zurück zum Zitat Iosifidis A, Tefas A, Pitas I (2016) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311–324CrossRef Iosifidis A, Tefas A, Pitas I (2016) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311–324CrossRef
18.
Zurück zum Zitat Nguyen TV, Mirza B (2017) Dual-layer kernel extreme learning machine for action recognition. Neurocomputing 260:123–130CrossRef Nguyen TV, Mirza B (2017) Dual-layer kernel extreme learning machine for action recognition. Neurocomputing 260:123–130CrossRef
19.
Zurück zum Zitat Zhu W, Miao J, Qing L (2014) Constrained extreme learning machine: a novel highly discriminative random feedforward neural network. In 2014 international joint conference on neural networks (IJCNN). IEEE, pp 800–807 Zhu W, Miao J, Qing L (2014) Constrained extreme learning machine: a novel highly discriminative random feedforward neural network. In 2014 international joint conference on neural networks (IJCNN). IEEE, pp 800–807
20.
Zurück zum Zitat Niu P, Ma Y, Li M, Yan S, Li G (2016) A kind of parameters self-adjusting extreme learning machine. Neural Process Lett 44(3):813–830CrossRef Niu P, Ma Y, Li M, Yan S, Li G (2016) A kind of parameters self-adjusting extreme learning machine. Neural Process Lett 44(3):813–830CrossRef
21.
Zurück zum Zitat Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18):3460–3468CrossRef Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18):3460–3468CrossRef
22.
Zurück zum Zitat Iosifidis A, Tefas A, Pitas I (2015) Dropelm: Fast neural network regularization with dropout and dropconnect. Neurocomputing 162:57–66CrossRef Iosifidis A, Tefas A, Pitas I (2015) Dropelm: Fast neural network regularization with dropout and dropconnect. Neurocomputing 162:57–66CrossRef
23.
Zurück zum Zitat Yu W, Zhuang F, He Q, Shi Z (2015) Learning deep representations via extreme learning machines. Neurocomputing 149:308–315CrossRef Yu W, Zhuang F, He Q, Shi Z (2015) Learning deep representations via extreme learning machines. Neurocomputing 149:308–315CrossRef
24.
Zurück zum Zitat Zhou H, Huang G-B, Lin Z, Wang H, Soh YC (2015) Stacked extreme learning machines. IEEE Trans Cybern 45(9):2013–2025CrossRef Zhou H, Huang G-B, Lin Z, Wang H, Soh YC (2015) Stacked extreme learning machines. IEEE Trans Cybern 45(9):2013–2025CrossRef
25.
Zurück zum Zitat Li G, Niu P, Ma Y, Wang H, Zhang W (2014) Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency. Knowl-Based Syst 67:278–289CrossRef Li G, Niu P, Ma Y, Wang H, Zhang W (2014) Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency. Knowl-Based Syst 67:278–289CrossRef
26.
Zurück zum Zitat Han F, Yao H-F, Ling Q-H (2013) An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116:87–93CrossRef Han F, Yao H-F, Ling Q-H (2013) An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116:87–93CrossRef
27.
Zurück zum Zitat Cao J, Lin Z, Huang G-B (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36(3):285–305CrossRef Cao J, Lin Z, Huang G-B (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36(3):285–305CrossRef
28.
Zurück zum Zitat Neumann K, Steil JJ (2011) Batch intrinsic plasticity for extreme learning machines. In International conference on artificial neural networks. Springer, Berlin pp 339–346 Neumann K, Steil JJ (2011) Batch intrinsic plasticity for extreme learning machines. In International conference on artificial neural networks. Springer, Berlin pp 339–346
29.
Zurück zum Zitat Klaus Steil J (2013) Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity. Neurocomputing 102:23–30CrossRef Klaus Steil J (2013) Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity. Neurocomputing 102:23–30CrossRef
30.
Zurück zum Zitat Sanger TD (1989) Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw 2(6):459–473CrossRef Sanger TD (1989) Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw 2(6):459–473CrossRef
31.
Zurück zum Zitat Johnson WB, Lindenstrauss J (1984) Extensions of lipschitz mappings into a hilbert space. Contemp Math 26(189–206):1MathSciNetMATH Johnson WB, Lindenstrauss J (1984) Extensions of lipschitz mappings into a hilbert space. Contemp Math 26(189–206):1MathSciNetMATH
32.
Zurück zum Zitat Li C (2011) A model of neuronal intrinsic plasticity. IEEE Trans Auton Ment Dev 3(4):277–284CrossRef Li C (2011) A model of neuronal intrinsic plasticity. IEEE Trans Auton Ment Dev 3(4):277–284CrossRef
33.
Zurück zum Zitat Triesch J (2005) Synergies between intrinsic and synaptic plasticity in individual model neurons. Adv Neural Inf Process Syst 1417–1424 Triesch J (2005) Synergies between intrinsic and synaptic plasticity in individual model neurons. Adv Neural Inf Process Syst 1417–1424
34.
Zurück zum Zitat Schrauwen B, Wardermann M, Verstraeten D, Steil JJ, Stroobandt D (2008) Improving reservoirs using intrinsic plasticity. Neurocomputing 71(7–9):1159–1171CrossRef Schrauwen B, Wardermann M, Verstraeten D, Steil JJ, Stroobandt D (2008) Improving reservoirs using intrinsic plasticity. Neurocomputing 71(7–9):1159–1171CrossRef
35.
Zurück zum Zitat Hebb DO (2005) The organization of behavior: a neuropsychological theory. Psychology Press, Hove Hebb DO (2005) The organization of behavior: a neuropsychological theory. Psychology Press, Hove
36.
Zurück zum Zitat Oja E, Karhunen J, Wang L, Vigario R (1996) Principal and independent components in neural networks-recent developments. Proceedings VII Italian Workshop Neural Networks WIRN 95:16–35 Oja E, Karhunen J, Wang L, Vigario R (1996) Principal and independent components in neural networks-recent developments. Proceedings VII Italian Workshop Neural Networks WIRN 95:16–35
37.
Zurück zum Zitat Karhunen J, Joutsensalo J (1995) Generalizations of principal component analysis, optimization problems, and neural networks. Neural Netw 8(4):549–562CrossRef Karhunen J, Joutsensalo J (1995) Generalizations of principal component analysis, optimization problems, and neural networks. Neural Netw 8(4):549–562CrossRef
38.
Zurück zum Zitat Triesch J (2014) Synergies between intrinsic and synaptic plasticity mechanisms. Neural Comput 19(4):885–909 s Triesch J (2014) Synergies between intrinsic and synaptic plasticity mechanisms. Neural Comput 19(4):885–909 s
39.
Zurück zum Zitat Schlkopf B, Platt J, Hofmann T (2006) Greedy layer-wise training of deep networks. In: International conference on neural information processing systems, pp 153–160 Schlkopf B, Platt J, Hofmann T (2006) Greedy layer-wise training of deep networks. In: International conference on neural information processing systems, pp 153–160
40.
Zurück zum Zitat Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. Proc IEEE Conf Comput Vis Pattern Recognit 1(2):3 Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. Proc IEEE Conf Comput Vis Pattern Recognit 1(2):3
Metadaten
Titel
Optimizing Extreme Learning Machine via Generalized Hebbian Learning and Intrinsic Plasticity Learning
verfasst von
Chao Chen
Xinyu Jin
Boyuan Jiang
Lanjuan Li
Publikationsdatum
26.07.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9869-6

Weitere Artikel der Ausgabe 3/2019

Neural Processing Letters 3/2019 Zur Ausgabe

Neuer Inhalt