Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2017

16.08.2016 | Original Article

Optimizing GHG emission and energy-saving performance of miscanthus-based value chains

verfasst von: Florian Meyer, Moritz Wagner, Iris Lewandowski

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Miscanthus is a high-yielding lignocellulosic crop providing up to 40 t of dry matter per hectare and year. Its biomass can be used in energetic or material utilization pathways. The goal of this study was the comparison of three different conversion techniques (combustion, second-generation bioethanol, and insulation material) for miscanthus biomass produced at five locations throughout Europe using a life cycle assessment approach. In particular, the interdependencies between the cropping location, the miscanthus genotypes, and the utilization pathways were investigated. The potential savings of greenhouse gas (GHG) emissions and fossil energy were analyzed through comparison with a corresponding substituted product system. The highest GHG savings of all scenarios investigated were achieved by heat and power production in Portugal (42.7 t CO2-eq ha−1 a−1). However, at the other four locations (Sweden, Denmark, Germany, England), bioethanol production gave the highest GHG savings. In contrast, the highest energy savings were achieved by combined heat and power generation via combustion at all five locations (up to 642 GJ ha−1 a−1). A high correlation was found between yield and both GHG-emission savings and energy savings. Biomass composition and quality showed a comparatively low impact on the results. However, the composition is assumed to have a high relevance for other impact categories not assessed within this study, such as acidification and eutrophication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Lewandowski I, Heinz A (2003) Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19(1):45–63CrossRef Lewandowski I, Heinz A (2003) Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19(1):45–63CrossRef
4.
Zurück zum Zitat Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30CrossRef Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30CrossRef
5.
Zurück zum Zitat Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361CrossRef Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361CrossRef
6.
Zurück zum Zitat Tao G, Geladi P, Lestander TA, Xiong S (2012) Biomass properties in association with plant species and assortments. II: a synthesis based on literature data for ash elements. Renew Sust Energ Rev 16(5):3507–3522CrossRef Tao G, Geladi P, Lestander TA, Xiong S (2012) Biomass properties in association with plant species and assortments. II: a synthesis based on literature data for ash elements. Renew Sust Energ Rev 16(5):3507–3522CrossRef
7.
Zurück zum Zitat Mclaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14(4):317–324CrossRef Mclaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14(4):317–324CrossRef
8.
Zurück zum Zitat Long SP (1994) The application of physiological and molecular understanding of the effects of the environment on photosynthesis in the selection of novel “fuel” crops; with particular reference to C4 perennials. In: Struick PC, Vredenberg W, Renkema JA, Parlevet JE (eds) Plant production on the threshold of a new century-congress of the 75th anniversary of Wageningen agricultural university. Kluwer Academic, Dordrecht, pp. 231–244CrossRef Long SP (1994) The application of physiological and molecular understanding of the effects of the environment on photosynthesis in the selection of novel “fuel” crops; with particular reference to C4 perennials. In: Struick PC, Vredenberg W, Renkema JA, Parlevet JE (eds) Plant production on the threshold of a new century-congress of the 75th anniversary of Wageningen agricultural university. Kluwer Academic, Dordrecht, pp. 231–244CrossRef
9.
Zurück zum Zitat Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2011) Performance of 15 miscanthus genotypes at five sites in Europe. Agron J 93(5):1013–1019CrossRef Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2011) Performance of 15 miscanthus genotypes at five sites in Europe. Agron J 93(5):1013–1019CrossRef
10.
Zurück zum Zitat Lee KH, Isenhart TM, Schultz RC, Mickelson SK (2000) Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. J Environ Qual 29(4):1200–1205CrossRef Lee KH, Isenhart TM, Schultz RC, Mickelson SK (2000) Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. J Environ Qual 29(4):1200–1205CrossRef
11.
Zurück zum Zitat Bullard M (2001) Economics of miscanthus production. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp. 155–171 Bullard M (2001) Economics of miscanthus production. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp. 155–171
12.
Zurück zum Zitat Kahle P, Beuch S, Boelcke B, Leinweber P, Schulten HR (2001) Cropping of miscanthus in central Europe: biomass and influence on nutrients and soil organic matter. Eur J Agron 15:171–194CrossRef Kahle P, Beuch S, Boelcke B, Leinweber P, Schulten HR (2001) Cropping of miscanthus in central Europe: biomass and influence on nutrients and soil organic matter. Eur J Agron 15:171–194CrossRef
13.
Zurück zum Zitat Gauder M, Graeff-Hönninger S, Lewandowski I, Claupein W (2011) Long-term yield and performance of 15 different miscanthus genotypes in Southwest Germany. Ann Appl Biol 160(2):126–136CrossRef Gauder M, Graeff-Hönninger S, Lewandowski I, Claupein W (2011) Long-term yield and performance of 15 different miscanthus genotypes in Southwest Germany. Ann Appl Biol 160(2):126–136CrossRef
14.
Zurück zum Zitat Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of miscanthus in relation to its use as a biomass feedstock. Biomass Bioenergy 34(3):652–660CrossRef Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of miscanthus in relation to its use as a biomass feedstock. Biomass Bioenergy 34(3):652–660CrossRef
15.
Zurück zum Zitat Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones MB, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of miscanthus genotypes. Agron J 95(5):1274–1280CrossRef Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones MB, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of miscanthus genotypes. Agron J 95(5):1274–1280CrossRef
16.
Zurück zum Zitat Jorgensen U, Muhs H-J (2001) Miscanthus breeding and improvement. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James and James, London Jorgensen U, Muhs H-J (2001) Miscanthus breeding and improvement. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James and James, London
17.
Zurück zum Zitat Obernberger I (1997) Stand und Entwicklung der Verbrennungstechnik. VDI Ber 1319:47–80 Obernberger I (1997) Stand und Entwicklung der Verbrennungstechnik. VDI Ber 1319:47–80
18.
Zurück zum Zitat Propheter JL, Staggenborg SA, Wu X, Wang D (2010) Performance of annual and perennial biofuel crops: yield during the first two years. Agron J 102(2):806–814CrossRef Propheter JL, Staggenborg SA, Wu X, Wang D (2010) Performance of annual and perennial biofuel crops: yield during the first two years. Agron J 102(2):806–814CrossRef
19.
Zurück zum Zitat Rawe BA (2008) Breakthroughs and challenges in the production of cellulosic ethanol. MMG 445. Basic Biotechnology eJournal 4:10–15 Rawe BA (2008) Breakthroughs and challenges in the production of cellulosic ethanol. MMG 445. Basic Biotechnology eJournal 4:10–15
20.
Zurück zum Zitat Lewandowski I, Kicherer A, Vonier P (1995) CO2-balance for the cultivation and combustion of miscanthus. Biomass Bioenergy 8(2):81–90CrossRef Lewandowski I, Kicherer A, Vonier P (1995) CO2-balance for the cultivation and combustion of miscanthus. Biomass Bioenergy 8(2):81–90CrossRef
21.
Zurück zum Zitat GaBi (2012) GaBi Database. Pe International GaBi (2012) GaBi Database. Pe International
22.
Zurück zum Zitat Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric Ecosyst Environ 86(2):135–144CrossRef Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric Ecosyst Environ 86(2):135–144CrossRef
23.
Zurück zum Zitat Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227CrossRef Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227CrossRef
25.
Zurück zum Zitat Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507CrossRef Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507CrossRef
26.
Zurück zum Zitat Hofbauer H, Kaltschmitt M, Nussbaumer T, Hartmann H, Obernberger I (2009) Grundlagen der thermo-chemischen Umwandlung biogener Festbrennstoffe. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse—Grundlagen, Techniken und Verfahren. Springer-Verlag, Berlin Hofbauer H, Kaltschmitt M, Nussbaumer T, Hartmann H, Obernberger I (2009) Grundlagen der thermo-chemischen Umwandlung biogener Festbrennstoffe. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse—Grundlagen, Techniken und Verfahren. Springer-Verlag, Berlin
27.
Zurück zum Zitat Obernberger I (2009) Feste Konversionsrückstände und deren Verwertung. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse—Grundlagen, Techniken und Verfahren. Springer-Verlag, Berlin Obernberger I (2009) Feste Konversionsrückstände und deren Verwertung. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse—Grundlagen, Techniken und Verfahren. Springer-Verlag, Berlin
28.
Zurück zum Zitat Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2000) European Miscanthus Improvement. Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2000) European Miscanthus Improvement.
29.
Zurück zum Zitat Sommersacher P, Thomas Brunner T, Obernberger I (2012) Fuel indexes: a novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuel 26(1):380–390CrossRef Sommersacher P, Thomas Brunner T, Obernberger I (2012) Fuel indexes: a novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuel 26(1):380–390CrossRef
30.
Zurück zum Zitat Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005) Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Applied Biochemistry and Biotechnology—Part A: Enzyme Engineering and Biotechnology 121(1–3):163–170CrossRef Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005) Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Applied Biochemistry and Biotechnology—Part A: Enzyme Engineering and Biotechnology 121(1–3):163–170CrossRef
31.
Zurück zum Zitat Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100(4):1515–1523CrossRef Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100(4):1515–1523CrossRef
32.
Zurück zum Zitat Kumar D, Murthy GS (2012) Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. The International Journal of Life Cycle Assessment 4(17):388–401CrossRef Kumar D, Murthy GS (2012) Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. The International Journal of Life Cycle Assessment 4(17):388–401CrossRef
34.
Zurück zum Zitat Nielsen PH, Oxenbøll KM, Wenzel H (2007) Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes a/S. The International Journal of Life Cycle Assessment 12(6):432–438CrossRef Nielsen PH, Oxenbøll KM, Wenzel H (2007) Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes a/S. The International Journal of Life Cycle Assessment 12(6):432–438CrossRef
35.
Zurück zum Zitat Sánchez-Segado S, Lozano LJ, de Juan GD, Godínez C, de los Rios AP, Hernández-Fernández FJ (2012) Life cycle assessment analysis of ethanol production from carob pod. Chem Eng Trans 21:613–618 Sánchez-Segado S, Lozano LJ, de Juan GD, Godínez C, de los Rios AP, Hernández-Fernández FJ (2012) Life cycle assessment analysis of ethanol production from carob pod. Chem Eng Trans 21:613–618
36.
Zurück zum Zitat Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 130(1–3):496–508CrossRef Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 130(1–3):496–508CrossRef
37.
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRef
38.
Zurück zum Zitat Graboski M, Bain R (1981) Properties of biomass relevant to gasification. In: Reed TB (ed) Biomass gasification: principles and technology. Noyes Data Corporation, Park Ridge, New Jersey Graboski M, Bain R (1981) Properties of biomass relevant to gasification. In: Reed TB (ed) Biomass gasification: principles and technology. Noyes Data Corporation, Park Ridge, New Jersey
39.
Zurück zum Zitat Uihlein A, Ehrenberger S, Schebek L (2008) Utilisation options of renewable resources: a life cycle assessment of selected products. J Clean Prod 16:1306–1320CrossRef Uihlein A, Ehrenberger S, Schebek L (2008) Utilisation options of renewable resources: a life cycle assessment of selected products. J Clean Prod 16:1306–1320CrossRef
40.
Zurück zum Zitat GmbH PMDuH (2012) Telefonische Auskunft des Produktionsleiters der Firma MEHA Dämmstoffe und Handels GmbH, Schifferstadt. GmbH PMDuH (2012) Telefonische Auskunft des Produktionsleiters der Firma MEHA Dämmstoffe und Handels GmbH, Schifferstadt.
41.
Zurück zum Zitat Rivela B, Moreira MT, Feijoo G (2007) Life cycle inventory of medium density fibreboard. Int J Life Cycle Assess 12(3):143–150CrossRef Rivela B, Moreira MT, Feijoo G (2007) Life cycle inventory of medium density fibreboard. Int J Life Cycle Assess 12(3):143–150CrossRef
42.
Zurück zum Zitat da Costa SL, Chundawat SP, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347CrossRef da Costa SL, Chundawat SP, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347CrossRef
43.
Zurück zum Zitat Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef
44.
Zurück zum Zitat Jeswani HK, Falano T, Azapagic A (2015) Life cycle environmental sustainability of lignocellulosic ethanol produced in integrated thermo-chemical biorefineries. Biofuels Bioprod Biorefin 9:661–676CrossRef Jeswani HK, Falano T, Azapagic A (2015) Life cycle environmental sustainability of lignocellulosic ethanol produced in integrated thermo-chemical biorefineries. Biofuels Bioprod Biorefin 9:661–676CrossRef
47.
Zurück zum Zitat Arundale RA, Dohleman FG, Heaton EA, Mcgrath JM, Voigt T, Long SP (2014) Yields of miscanthus × giganteus and Panicum virgatum decline with stand age in the midwestern USA. Global Change Biology Bioenergy 6(1):1–13CrossRef Arundale RA, Dohleman FG, Heaton EA, Mcgrath JM, Voigt T, Long SP (2014) Yields of miscanthus × giganteus and Panicum virgatum decline with stand age in the midwestern USA. Global Change Biology Bioenergy 6(1):1–13CrossRef
48.
49.
Zurück zum Zitat Arundale RA, Dohleman FG, Voigt TB, Long SP (2014) Nitrogen fertilization does significantly increase yields of stands of Miscanthus × giganteus and Panicum virgatum in multiyear trials in Illinois. BioEnergy Research 7:408–416CrossRef Arundale RA, Dohleman FG, Voigt TB, Long SP (2014) Nitrogen fertilization does significantly increase yields of stands of Miscanthus × giganteus and Panicum virgatum in multiyear trials in Illinois. BioEnergy Research 7:408–416CrossRef
50.
Zurück zum Zitat Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327CrossRef Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327CrossRef
51.
Zurück zum Zitat Powlson DS, Whitmore KW, Goulding WT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55CrossRef Powlson DS, Whitmore KW, Goulding WT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55CrossRef
52.
Zurück zum Zitat Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, miscanthus. Glob Chang Biol 13:2296–2307CrossRef Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, miscanthus. Glob Chang Biol 13:2296–2307CrossRef
53.
Zurück zum Zitat Prasad A, Sotenko M, Blenkinsopp T, Coles SR (2016) Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess 21(1):44–50CrossRef Prasad A, Sotenko M, Blenkinsopp T, Coles SR (2016) Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess 21(1):44–50CrossRef
54.
Zurück zum Zitat Dornburg V, Lewandowski I, Patel M (2003) Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy. J Ind Ecol 7(3–4):93–116CrossRef Dornburg V, Lewandowski I, Patel M (2003) Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy. J Ind Ecol 7(3–4):93–116CrossRef
55.
Zurück zum Zitat Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur J Agron 6:163–177CrossRef Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur J Agron 6:163–177CrossRef
Metadaten
Titel
Optimizing GHG emission and energy-saving performance of miscanthus-based value chains
verfasst von
Florian Meyer
Moritz Wagner
Iris Lewandowski
Publikationsdatum
16.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2017
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-016-0219-5

Weitere Artikel der Ausgabe 2/2017

Biomass Conversion and Biorefinery 2/2017 Zur Ausgabe