Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

19.01.2021

Optimizing the Gain and Directivity of a Microstrip Antenna with Metamaterial Structures by Using Artificial Neural Network Approach

verfasst von: Metin Sağık, Olcay Altıntaş, Emin Ünal, Ersin Özdemir, Mustafa Demirci, Şule Çolak, Muharrem Karaaslan

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this study is to improve the gain and directivity of the microstrip patch antenna by means of metamaterial (MTM) structures. As it is known, antennas have power densities in a certain direction, and the radiation curves of the antennas are shaped by orienting them according to this power density. Based on this feature of the antennas, it is aimed to improve the gain and directivity of microstrip patch antennas with the most suitable structures thanks to metamaterial (MTM) structures. The MTM structures designed are interacted with the antenna. Then, the frequency, gain and directivity of the antenna are trained by the artificial neural network technique to estimate the most appropriate values. As a result, the gain and directivity of the antenna are improved by the interaction of microstrip patch antenna and MTM structures and the results are interpreted on the figures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.MathSciNetCrossRef McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.MathSciNetCrossRef
2.
Zurück zum Zitat Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials: Physics and engineering explorations. NY: Wiley. Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials: Physics and engineering explorations. NY: Wiley.
3.
Zurück zum Zitat Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of and μ. Soviet Physics Uspekhi, 10(4), 509.CrossRef Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of and μ. Soviet Physics Uspekhi, 10(4), 509.CrossRef
4.
Zurück zum Zitat Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773.CrossRef Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773.CrossRef
5.
Zurück zum Zitat Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084.CrossRef Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084.CrossRef
6.
Zurück zum Zitat Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184.CrossRef Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184.CrossRef
7.
Zurück zum Zitat Akdagli, A., & Kayabasi, A. (2014). An accurate computation method based on artificial neural networks with different learning algorithms for resonant frequency of annular ring microstrip antennas. Journal of Computational Electronics, 13(4), 1014–1019.CrossRef Akdagli, A., & Kayabasi, A. (2014). An accurate computation method based on artificial neural networks with different learning algorithms for resonant frequency of annular ring microstrip antennas. Journal of Computational Electronics, 13(4), 1014–1019.CrossRef
8.
Zurück zum Zitat Sharma, S. K., & Chaudhary, R. K. (2016). Dual arm patch antenna for wideband applications using metamaterial. Wireless Personal Communications, 86(2), 1087–1094.CrossRef Sharma, S. K., & Chaudhary, R. K. (2016). Dual arm patch antenna for wideband applications using metamaterial. Wireless Personal Communications, 86(2), 1087–1094.CrossRef
9.
Zurück zum Zitat Zainud-Deen, S. H., Mabrouk, A. M., & Malhat, H. A. (2018). Frequency tunable graphene metamaterial reflect array. Wireless Personal Communications, 103, 1849.CrossRef Zainud-Deen, S. H., Mabrouk, A. M., & Malhat, H. A. (2018). Frequency tunable graphene metamaterial reflect array. Wireless Personal Communications, 103, 1849.CrossRef
10.
Zurück zum Zitat Deshmukh, A. A., Kulkarni, S. D., Venkata, A. P. C., & Phatak, N. V. (2015). Artificial neural network model for suspended rectangular microstrip antennas. Procedia Computer Science, 49, 332–339.CrossRef Deshmukh, A. A., Kulkarni, S. D., Venkata, A. P. C., & Phatak, N. V. (2015). Artificial neural network model for suspended rectangular microstrip antennas. Procedia Computer Science, 49, 332–339.CrossRef
11.
Zurück zum Zitat Deshmukh A. A, Venkata A. P. C., Nagarbowdi S., Kulkarni S. D. (2015) Artificial neural network model for suspended equilateral triangular microstrip antennas. In: Communication, Information & Computing Technology (ICCICT), 2015 International Conference on (pp. 1–4). IEEE. Deshmukh A. A, Venkata A. P. C., Nagarbowdi S., Kulkarni S. D. (2015) Artificial neural network model for suspended equilateral triangular microstrip antennas. In: Communication, Information & Computing Technology (ICCICT), 2015 International Conference on (pp. 1–4). IEEE.
12.
Zurück zum Zitat Deshmukh A. A., Shukla M., Patel S., Labde, S., Venkata A. P. C. (2018) Resonance frequency estimation for equilateral triangular microstrip antennas using artificial neural network model. In: Proceedings of International Conference on Wireless Communication (pp. 67–74). Springer, Singapore. Deshmukh A. A., Shukla M., Patel S., Labde, S., Venkata A. P. C. (2018) Resonance frequency estimation for equilateral triangular microstrip antennas using artificial neural network model. In: Proceedings of International Conference on Wireless Communication (pp. 67–74). Springer, Singapore.
13.
Zurück zum Zitat Gopalakrishnan, R., Gunasekaran, N (2005). Design of equilateral triangular microstrip antenna using artificial neural networks. In: Antenna Technology: Small Antennas and Novel Metamaterials, 2005. IWAT 2005. IEEE International Workshop on (pp. 246–249). IEEE. Gopalakrishnan, R., Gunasekaran, N (2005). Design of equilateral triangular microstrip antenna using artificial neural networks. In: Antenna Technology: Small Antennas and Novel Metamaterials, 2005. IWAT 2005. IEEE International Workshop on (pp. 246–249). IEEE.
14.
Zurück zum Zitat Khan I., Tian Y. B., Vllah H., Rahman S. U., Kamal M. M. (2018). Design annular ring microstrip antenna based on artificial neural network. In: 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 2033–2037). IEEE. Khan I., Tian Y. B., Vllah H., Rahman S. U., Kamal M. M. (2018). Design annular ring microstrip antenna based on artificial neural network. In: 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 2033–2037). IEEE.
15.
Zurück zum Zitat Ramya S, Rao IS (2009) An Ultra-Thin, Bandwidth Enhanced Metamaterial Absorber for X-Band Applications. Wireless Personal Communications. 1–1. Ramya S, Rao IS (2009) An Ultra-Thin, Bandwidth Enhanced Metamaterial Absorber for X-Band Applications. Wireless Personal Communications. 1–1.
16.
Zurück zum Zitat Luna D. R., Vasconcelos C. F. L., Cruz R. M. S. (2013). Using natural optimization algorithms and artificial neural networks in the design of effective permittivity of metamaterials. In Microwave &Optoelectronics Conference (IMOC), 2013 SBMO/IEEE MTT-S International (pp. 1–4). IEEE. Luna D. R., Vasconcelos C. F. L., Cruz R. M. S. (2013). Using natural optimization algorithms and artificial neural networks in the design of effective permittivity of metamaterials. In Microwave &Optoelectronics Conference (IMOC), 2013 SBMO/IEEE MTT-S International (pp. 1–4). IEEE.
17.
Zurück zum Zitat Patnaik, A., Choudhury, B., Pradhan, P., Mishra, R. K., & Christodoulou, C. (2007). An ANN application for fault finding in antenna arrays. IEEE Transactions on Antennas and Propagation, 55(3), 775–777.CrossRef Patnaik, A., Choudhury, B., Pradhan, P., Mishra, R. K., & Christodoulou, C. (2007). An ANN application for fault finding in antenna arrays. IEEE Transactions on Antennas and Propagation, 55(3), 775–777.CrossRef
18.
Zurück zum Zitat Rajaraman G., Sood K., Anbazhagan S. (2013) A novel method to compute resonant frequency of metamaterial based patch antennas using neural networks. Rajaraman G., Sood K., Anbazhagan S. (2013) A novel method to compute resonant frequency of metamaterial based patch antennas using neural networks.
19.
Zurück zum Zitat Sarmah K., Sarma K. K., Baruah S (2014). ANN based optimization of resonating frequency of split ring resonator. In: Computational Intelligence for Communication Systems and Networks (CIComms), 2014 IEEE Symposium on(pp. 1–6). IEEE. Sarmah K., Sarma K. K., Baruah S (2014). ANN based optimization of resonating frequency of split ring resonator. In: Computational Intelligence for Communication Systems and Networks (CIComms), 2014 IEEE Symposium on(pp. 1–6). IEEE.
20.
Zurück zum Zitat Singh P., Singh V. K., Lala A., Bhoi A. K (2018). Design and analysis of microstrip antenna using multilayer feed-forward back-propagation neural network (MLPFFBP-ANN). In: Advances in Communication, Devices and Networking (pp. 393–398). Springer, Singapore. Singh P., Singh V. K., Lala A., Bhoi A. K (2018). Design and analysis of microstrip antenna using multilayer feed-forward back-propagation neural network (MLPFFBP-ANN). In: Advances in Communication, Devices and Networking (pp. 393–398). Springer, Singapore.
21.
Zurück zum Zitat Sivia, J. S., Pharwaha, A. P. S., & Kamal, T. S. (2013). Analysis and design of circular fractal antenna using artificial neural networks. Progress In Electromagnetics Research, 56, 251–267.CrossRef Sivia, J. S., Pharwaha, A. P. S., & Kamal, T. S. (2013). Analysis and design of circular fractal antenna using artificial neural networks. Progress In Electromagnetics Research, 56, 251–267.CrossRef
22.
Zurück zum Zitat Thakare V. V., Singhal P. (2010). Microstrip antenna design using artificial neural networks. International Journal of RF and Microwave Computer‐Aided Engineering: Co‐sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics (CAMPmode) at the University of Colorado at Boulder, 20(1), 76–86. Thakare V. V., Singhal P. (2010). Microstrip antenna design using artificial neural networks. International Journal of RF and Microwave Computer‐Aided Engineering: Co‐sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics (CAMPmode) at the University of Colorado at Boulder, 20(1), 76–86.
23.
Zurück zum Zitat Türker, N., Güneş, F., & Yildirim, T. (2007). Artificial neural design of microstrip antennas. Turkish Journal of Electrical Engineering & Computer Sciences, 14(3), 445–453. Türker, N., Güneş, F., & Yildirim, T. (2007). Artificial neural design of microstrip antennas. Turkish Journal of Electrical Engineering & Computer Sciences, 14(3), 445–453.
24.
Zurück zum Zitat Srivastava M., Saini S., Thakur A. (2018). Analysis and parameter estimation of microstrip circular patch antennas using artificial neural networks. In: Soft Computing: Theories and Applications (pp. 285–292). Springer, Singapore. Srivastava M., Saini S., Thakur A. (2018). Analysis and parameter estimation of microstrip circular patch antennas using artificial neural networks. In: Soft Computing: Theories and Applications (pp. 285–292). Springer, Singapore.
25.
Zurück zum Zitat Abdulkarim, Y. I., Deng, L., Awl, H. N., Muhammadsharif, F. F., Altintas, O., Karaaslan, M., & Luo, H. (2020). Design of a broadband coplanar waveguide-fed antenna incorporating organic solar cells with 100% insolation for ku band satellite communication. Materials, 13(1), 142.CrossRef Abdulkarim, Y. I., Deng, L., Awl, H. N., Muhammadsharif, F. F., Altintas, O., Karaaslan, M., & Luo, H. (2020). Design of a broadband coplanar waveguide-fed antenna incorporating organic solar cells with 100% insolation for ku band satellite communication. Materials, 13(1), 142.CrossRef
26.
Zurück zum Zitat Ozdemir, E., Akgol, O., Ozkan Alkurt, F., Karaaslan, M., Abdulkarim, Y. I., & Deng, L. (2020). Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach. Applied Sciences, 10(1), 378.CrossRef Ozdemir, E., Akgol, O., Ozkan Alkurt, F., Karaaslan, M., Abdulkarim, Y. I., & Deng, L. (2020). Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach. Applied Sciences, 10(1), 378.CrossRef
27.
Zurück zum Zitat Awl, H. N., Abdulkarim, Y. I., Deng, L., Bakır, M., Muhammadsharif, F. F., Karaaslan, M., & Luo, H. (2020). Bandwidth improvement in bow-tie microstrip antennas: The effect of substrate type and design dimensions. Applied Sciences, 10(2), 504.CrossRef Awl, H. N., Abdulkarim, Y. I., Deng, L., Bakır, M., Muhammadsharif, F. F., Karaaslan, M., & Luo, H. (2020). Bandwidth improvement in bow-tie microstrip antennas: The effect of substrate type and design dimensions. Applied Sciences, 10(2), 504.CrossRef
28.
Zurück zum Zitat Nazeri, A., Baharian, M., Abdolali, A., & Karaaslan, M. (2020). A reflection-only method for characterizing PEC-backed anisotropic materials using waveguide higher order modes. International Journal of RF and Microwave Computer-Aided Engineering, 30(10), e22340.CrossRef Nazeri, A., Baharian, M., Abdolali, A., & Karaaslan, M. (2020). A reflection-only method for characterizing PEC-backed anisotropic materials using waveguide higher order modes. International Journal of RF and Microwave Computer-Aided Engineering, 30(10), e22340.CrossRef
29.
Zurück zum Zitat Abdulkarim, Y. I., Deng, L. W., Yang, J. L., Colak, S., Karaaslan, M., & Huang Luo, S. X. H. (2020). Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 27(4), 1235–1246.CrossRef Abdulkarim, Y. I., Deng, L. W., Yang, J. L., Colak, S., Karaaslan, M., & Huang Luo, S. X. H. (2020). Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 27(4), 1235–1246.CrossRef
30.
Zurück zum Zitat Ozturk, M., Karaaslan, M., Akgol, O., & Sevim, U. K. (2020). Mechanical and electromagnetic performance of cement based composites containing different replacement levels of ground granulated blast furnace slag, fly ash, silica fume and rice husk ash. Cement and Concrete Research, 136, 106177.CrossRef Ozturk, M., Karaaslan, M., Akgol, O., & Sevim, U. K. (2020). Mechanical and electromagnetic performance of cement based composites containing different replacement levels of ground granulated blast furnace slag, fly ash, silica fume and rice husk ash. Cement and Concrete Research, 136, 106177.CrossRef
Metadaten
Titel
Optimizing the Gain and Directivity of a Microstrip Antenna with Metamaterial Structures by Using Artificial Neural Network Approach
verfasst von
Metin Sağık
Olcay Altıntaş
Emin Ünal
Ersin Özdemir
Mustafa Demirci
Şule Çolak
Muharrem Karaaslan
Publikationsdatum
19.01.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-08004-8

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt