Skip to main content

2017 | OriginalPaper | Buchkapitel

9. Optimum Design of Steel Floor Systems Using ECBO

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Decks, interior beams, edge beams, and girders are parts of a steel floor system. If the deck is optimized without considering beam optimization, finding the best result is simple. However, a deck with a higher cost may increase the composite action of the beams and decrease the beam cost, thus reducing the total expense. Also, a different number of floor divisions can improve the total floor cost. Increasing beam capacity by using castellated beams is another efficient cost-saving method. In this study, floor optimization is performed and these three issues are discussed. Floor division number and deck sections are some of the variables. Also, for each beam, profile section of the beam, beam-cutting depth, cutting angle, spacing between holes, and number of filled holes at the ends of castellated beams are other variables. Constraints include the application of stress, stability, deflection, and vibration limitations according to the load and resistance factor (LRFD) design. The objective function is the total cost of the floor consisting of the steel profile, cutting and welding, concrete, steel deck, shear stud, and construction costs. Optimization is performed by enhanced colliding bodies optimization (ECBO). Results show that using castellated beams, selecting a deck with a higher price and considering the different number of floor divisions can decrease the total cost of the floor (Kaveh and Ghafari [1]).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kaveh A, Ghafari MH (2016) Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams. Struct Eng Mech 59(5):933–950CrossRef Kaveh A, Ghafari MH (2016) Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams. Struct Eng Mech 59(5):933–950CrossRef
2.
Zurück zum Zitat Morton S, Webber J (1994) Optimal design of a composite I-beam. Compos Struct 28(2):149–168CrossRef Morton S, Webber J (1994) Optimal design of a composite I-beam. Compos Struct 28(2):149–168CrossRef
3.
Zurück zum Zitat Klanšek U, Kravanja S (2007) Cost optimization of composite I beam floor system. Am J Appl Sci 5(1):7–17 Klanšek U, Kravanja S (2007) Cost optimization of composite I beam floor system. Am J Appl Sci 5(1):7–17
4.
Zurück zum Zitat Senouci AB, Al-Ansari MS (2009) Cost optimization of composite beams using genetic algorithms. Adv Eng Softw 40(11):1112–1118CrossRefMATH Senouci AB, Al-Ansari MS (2009) Cost optimization of composite beams using genetic algorithms. Adv Eng Softw 40(11):1112–1118CrossRefMATH
5.
Zurück zum Zitat Adeli H, Kim H (2001) Cost optimization of composite floors using neural dynamics model. Commun Numer Methods Eng 17(11):771–787CrossRefMATH Adeli H, Kim H (2001) Cost optimization of composite floors using neural dynamics model. Commun Numer Methods Eng 17(11):771–787CrossRefMATH
6.
Zurück zum Zitat Platt BS, Mtenga PV (2007) Parametric optimization of steel floor system cost using evolver. WIT Trans Built Environ 91:119–128 Platt BS, Mtenga PV (2007) Parametric optimization of steel floor system cost using evolver. WIT Trans Built Environ 91:119–128
7.
Zurück zum Zitat Kaveh A, Abadi ASM (2010) Cost optimization of a composite floor system using an improved harmony search algorithm. J Constr Steel Res 66(5):664–669CrossRef Kaveh A, Abadi ASM (2010) Cost optimization of a composite floor system using an improved harmony search algorithm. J Constr Steel Res 66(5):664–669CrossRef
8.
Zurück zum Zitat Poitras G, Lefrançois G, Cormier G (2011) Optimization of steel floor systems using particle swarm optimization. J Constr Steel Res 67(8):1225–1231CrossRef Poitras G, Lefrançois G, Cormier G (2011) Optimization of steel floor systems using particle swarm optimization. J Constr Steel Res 67(8):1225–1231CrossRef
9.
Zurück zum Zitat Kaveh A, Ahangaran M (2012) Discrete cost optimization of composite floor system using social harmony search model. Appl Soft Comput 12(1):372–381CrossRef Kaveh A, Ahangaran M (2012) Discrete cost optimization of composite floor system using social harmony search model. Appl Soft Comput 12(1):372–381CrossRef
10.
Zurück zum Zitat Kaveh A, Massoudi M (2012) Cost optimization of a composite floor system using ant colony system. Iran J Sci Technol Trans Civil Eng 36(C2):139–148 Kaveh A, Massoudi M (2012) Cost optimization of a composite floor system using ant colony system. Iran J Sci Technol Trans Civil Eng 36(C2):139–148
11.
Zurück zum Zitat ASCE (1994) Minimum design loads for buildings and other structures, vol 7. American Society of Civil Engineers, Chicago, IL ASCE (1994) Minimum design loads for buildings and other structures, vol 7. American Society of Civil Engineers, Chicago, IL
12.
Zurück zum Zitat AISC (2010) Specification for structural steel buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago, IL AISC (2010) Specification for structural steel buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago, IL
13.
Zurück zum Zitat Kerdal D, Nethercot D (1984) Failure modes for castellated beams. J Constr Steel Res 4(4):295–315CrossRef Kerdal D, Nethercot D (1984) Failure modes for castellated beams. J Constr Steel Res 4(4):295–315CrossRef
14.
Zurück zum Zitat Benitez MA, Darwin D, Donahey RC (1998) Deflections of composite beams with web openings. J Struct Eng ASCE 124(10):1139–1147CrossRef Benitez MA, Darwin D, Donahey RC (1998) Deflections of composite beams with web openings. J Struct Eng ASCE 124(10):1139–1147CrossRef
15.
Zurück zum Zitat Roll F (1971) Effects of differential shrinkage and creep on a composite steel-concrete structure. ACI Spec Publ 27 Roll F (1971) Effects of differential shrinkage and creep on a composite steel-concrete structure. ACI Spec Publ 27
16.
Zurück zum Zitat Murray TM, Allen DE, Ungar EE (2003) Floor vibrations due to human activity. American Institute of Steel Construction, Chicago, IL Murray TM, Allen DE, Ungar EE (2003) Floor vibrations due to human activity. American Institute of Steel Construction, Chicago, IL
17.
Zurück zum Zitat Naeim F (1991) Design practice to prevent floor vibrations. In: Steel Tips, Structural Steel Educational Council, Technical Information and Product Service, Steel Committee of California Naeim F (1991) Design practice to prevent floor vibrations. In: Steel Tips, Structural Steel Educational Council, Technical Information and Product Service, Steel Committee of California
18.
Zurück zum Zitat Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27CrossRef Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27CrossRef
19.
Zurück zum Zitat Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75CrossRef Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75CrossRef
20.
Zurück zum Zitat Csa C (2009) CSA-S16-09: design of steel structures. Canadian Standards Association, Mississauga, ON Csa C (2009) CSA-S16-09: design of steel structures. Canadian Standards Association, Mississauga, ON
21.
Zurück zum Zitat Kaveh A (2014) Advances in metaheuristic algorithms for optimal design of structures. Springer, SwitzerlandCrossRefMATH Kaveh A (2014) Advances in metaheuristic algorithms for optimal design of structures. Springer, SwitzerlandCrossRefMATH
Metadaten
Titel
Optimum Design of Steel Floor Systems Using ECBO
verfasst von
A. Kaveh
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-48012-1_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.