Skip to main content
Erschienen in: Energy Efficiency 3/2013

01.08.2013 | Original Article

Optimum exergy efficiency of single-effect ideal passive solar stills

verfasst von: S. C. Kaushik, K. R. Ranjan, N. L. Panwar

Erschienen in: Energy Efficiency | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a complex heat and mass transfer phenomenon in the solar stills. It is desired to examine the ways of maximizing the efficiency with the help of an effective thermodynamic tool, i.e., energy and exergy analysis. In this paper, a thermodynamic model has been developed to estimate the overall instantaneous exergy efficiency of the single-effect horizontal basin-type ideal passive solar stills. Theoretical overall instantaneous exergy efficiency of a passive solar still having 30° tilt angle of glass cover and water depth of 0.04 m on a typical day in June is evaluated and found in the range 0.06 to 5.9 % for the variation of experimental results of energy efficiency from 8 to 87.2 %. The daily energy and exergy efficiency of the solar still is 20.7 and 1.31 %, respectively. An optimum exergy efficiency of the ideal solar still is found to be 21.11 % corresponding to 80 % ultimate energy efficiency and at a typical operating condition. A feasible target of optimum exergy efficiency has been set under assumed ideal conditions to achieve in the future for the real working passive solar stills. It is also confirmed that the overall exergy efficiency increases with the increase of water temperature and decreases with the increase of ambient temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., et al. (2011). Considering the energy, water and food nexus: towards an integrated modeling approach. Energy Policy, 39, 7896–7906.CrossRef Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., et al. (2011). Considering the energy, water and food nexus: towards an integrated modeling approach. Energy Policy, 39, 7896–7906.CrossRef
Zurück zum Zitat Bejan, A. (2006). Advanced engineering thermodynamics. New Jersey: Hoboken-Wiley. Bejan, A. (2006). Advanced engineering thermodynamics. New Jersey: Hoboken-Wiley.
Zurück zum Zitat Cooper, P. I. (1973). The maximum efficiency of single effect solar stills. Solar Energy, 15, 215–217.CrossRef Cooper, P. I. (1973). The maximum efficiency of single effect solar stills. Solar Energy, 15, 215–217.CrossRef
Zurück zum Zitat Delyannis, E. (2003). Historic background of desalination and renewable energies. Solar Energy, 75, 357–366.CrossRef Delyannis, E. (2003). Historic background of desalination and renewable energies. Solar Energy, 75, 357–366.CrossRef
Zurück zum Zitat Dev, R., & Tiwari, G. N. (2009). Characteristic equation of a passive solar still. Desalination, 245, 246–265.CrossRef Dev, R., & Tiwari, G. N. (2009). Characteristic equation of a passive solar still. Desalination, 245, 246–265.CrossRef
Zurück zum Zitat Dincer, I. (2002). Technical, environmental and exergetic aspects of hydrogen energy systems. International Journal of Hydrogen Energy, 27, 265–285.CrossRef Dincer, I. (2002). Technical, environmental and exergetic aspects of hydrogen energy systems. International Journal of Hydrogen Energy, 27, 265–285.CrossRef
Zurück zum Zitat Dincer, I., & Rosen, M. A. (2007). Exergy: energy, environment and sustainable development. New York: Elsevier. Dincer, I., & Rosen, M. A. (2007). Exergy: energy, environment and sustainable development. New York: Elsevier.
Zurück zum Zitat Duffie, J. A., & Beckman, W. A. (2006). Solar engineering of thermal processes. New Jersey: Hoboken-Wiley. Duffie, J. A., & Beckman, W. A. (2006). Solar engineering of thermal processes. New Jersey: Hoboken-Wiley.
Zurück zum Zitat Dunkle, R. V. (1961). Solar water distillation: the roof type still and a multiple effect diffusion still. International Developments in Heat Transfer ASME Proceedings of International Heat Transfer, 5, 895–902. Dunkle, R. V. (1961). Solar water distillation: the roof type still and a multiple effect diffusion still. International Developments in Heat Transfer ASME Proceedings of International Heat Transfer, 5, 895–902.
Zurück zum Zitat Dwivedi, V. K., & Tiwari, G. N. (2008). An energy, exergy and life cycle cost analysis of single and double slope solar stills. Applied Science Research, 3, 225–241. Dwivedi, V. K., & Tiwari, G. N. (2008). An energy, exergy and life cycle cost analysis of single and double slope solar stills. Applied Science Research, 3, 225–241.
Zurück zum Zitat Garcia-Rodriguez, L., & Gomez-Camacho, C. (2001). Exergy analysis of the SOL-14 plant. Desalination, 137, 251–258.CrossRef Garcia-Rodriguez, L., & Gomez-Camacho, C. (2001). Exergy analysis of the SOL-14 plant. Desalination, 137, 251–258.CrossRef
Zurück zum Zitat Gupta, M. K., & Kaushik, S. C. (2010). Exergy analysis and investigation for various feed water heaters of direct steam generation solar-thermal power plant. Renewable Energy, 35, 1228–1235.CrossRef Gupta, M. K., & Kaushik, S. C. (2010). Exergy analysis and investigation for various feed water heaters of direct steam generation solar-thermal power plant. Renewable Energy, 35, 1228–1235.CrossRef
Zurück zum Zitat Haseli, Y., Dincer, I., & Naterer, G. F. (2008). Unified approach to exergy efficiency, environmental impact and sustainable development for standard thermodynamic cycles. International Journal of Green Energy, 5, 105–119.CrossRef Haseli, Y., Dincer, I., & Naterer, G. F. (2008). Unified approach to exergy efficiency, environmental impact and sustainable development for standard thermodynamic cycles. International Journal of Green Energy, 5, 105–119.CrossRef
Zurück zum Zitat Jijakli, K., Arafat, H., Kennedy, S., Mande, P., & Theeyattuparampil, V. V. (2012). How green solar desalination really is? Environmental assessment using life-cycle analysis (LCA) approach. Desalination, 287, 123–131.CrossRef Jijakli, K., Arafat, H., Kennedy, S., Mande, P., & Theeyattuparampil, V. V. (2012). How green solar desalination really is? Environmental assessment using life-cycle analysis (LCA) approach. Desalination, 287, 123–131.CrossRef
Zurück zum Zitat Kabeel, A. E., & El-Agouz, S. A. (2011). Review of researches and developments on solar stills. Desalination, 276, 1–12.CrossRef Kabeel, A. E., & El-Agouz, S. A. (2011). Review of researches and developments on solar stills. Desalination, 276, 1–12.CrossRef
Zurück zum Zitat Kabeel, A. E., Hamed, A. M., & El-Agouz, S. A. (2010). Cost analysis of different solar still configurations. Energy, 35, 2901–2908.CrossRef Kabeel, A. E., Hamed, A. M., & El-Agouz, S. A. (2010). Cost analysis of different solar still configurations. Energy, 35, 2901–2908.CrossRef
Zurück zum Zitat Kaushal, A., & Varun. (2010). Solar stills: a review. Renewable and Sustainable Energy Reviews, 14, 446–453.CrossRef Kaushal, A., & Varun. (2010). Solar stills: a review. Renewable and Sustainable Energy Reviews, 14, 446–453.CrossRef
Zurück zum Zitat Kaushik, S. C., Mishra, R. D., & Singh, N. (2000). Exergetic analysis of a solar thermal power system. Renewable Energy, 19, 135–143.CrossRef Kaushik, S. C., Mishra, R. D., & Singh, N. (2000). Exergetic analysis of a solar thermal power system. Renewable Energy, 19, 135–143.CrossRef
Zurück zum Zitat Kaushik, S. C., Reddy, V. S., & Tyagi, S. K. (2011). Energy and exergy analyses of thermal power plants: a review. Renewable and Sustainable Energy Reviews, 15, 1857–1872.CrossRef Kaushik, S. C., Reddy, V. S., & Tyagi, S. K. (2011). Energy and exergy analyses of thermal power plants: a review. Renewable and Sustainable Energy Reviews, 15, 1857–1872.CrossRef
Zurück zum Zitat Kianifar, A., Heris, S. Z., & Mahian, O. (2012). Exergy and economic analysis of a pyramid-shaped solar water purification system: active and passive cases. Energy, 38, 31–36.CrossRef Kianifar, A., Heris, S. Z., & Mahian, O. (2012). Exergy and economic analysis of a pyramid-shaped solar water purification system: active and passive cases. Energy, 38, 31–36.CrossRef
Zurück zum Zitat Kumar, S., & Tiwari, G. N. (2011). Analytical expression for instantaneous exergy efficiency of a shallow basin passive solar still. International Journal of Thermal Sciences, 50, 2543–2549.CrossRef Kumar, S., & Tiwari, G. N. (2011). Analytical expression for instantaneous exergy efficiency of a shallow basin passive solar still. International Journal of Thermal Sciences, 50, 2543–2549.CrossRef
Zurück zum Zitat Kwatra, H. S. (1996). Performance of solar still: predicted effect of enhanced evaporation area on yield and evaporation temperature. Solar Energy, 56, 261–266.CrossRef Kwatra, H. S. (1996). Performance of solar still: predicted effect of enhanced evaporation area on yield and evaporation temperature. Solar Energy, 56, 261–266.CrossRef
Zurück zum Zitat Malik, M. A. S., Tiwari, G. N., Kumar, A., & Sodha, M. S. (1982). Solar distillation—a practical study of a wide range of stills and their optimum design, construction and performance. Oxford: Pergamon Press. Malik, M. A. S., Tiwari, G. N., Kumar, A., & Sodha, M. S. (1982). Solar distillation—a practical study of a wide range of stills and their optimum design, construction and performance. Oxford: Pergamon Press.
Zurück zum Zitat Moran, M. J. (1989). Availability analysis: a guide to efficient energy use, corrected edition. New York: ASME. Moran, M. J. (1989). Availability analysis: a guide to efficient energy use, corrected edition. New York: ASME.
Zurück zum Zitat Moran, M. J., & Shapiro, H. N. (2010). Fundamentals of engineering thermodynamics, SI version (6th ed.). New Delhi: Wiley. Moran, M. J., & Shapiro, H. N. (2010). Fundamentals of engineering thermodynamics, SI version (6th ed.). New Delhi: Wiley.
Zurück zum Zitat Panwar, N. L., Kaushik, S. C., & Kothari, S. (2012). A review on energy and exergy analysis of solar drying systems. Renewable and Sustainable Energy Reviews, 16, 2812–2819.CrossRef Panwar, N. L., Kaushik, S. C., & Kothari, S. (2012). A review on energy and exergy analysis of solar drying systems. Renewable and Sustainable Energy Reviews, 16, 2812–2819.CrossRef
Zurück zum Zitat Petela, R. (2003). Exergy of undiluted thermal radiation. Solar Energy, 74, 469–488.CrossRef Petela, R. (2003). Exergy of undiluted thermal radiation. Solar Energy, 74, 469–488.CrossRef
Zurück zum Zitat Petela, R. (2010). Engineering thermodynamics of thermal radiation: for solar power utilization. New York: McGraw-Hill. Petela, R. (2010). Engineering thermodynamics of thermal radiation: for solar power utilization. New York: McGraw-Hill.
Zurück zum Zitat Ranjan, K. R., & Kaushik, S. C. (2012). Energetic and exergetic efficiency of a single effect basin passive solar still. Proceedings of National Seminar on Power Generation from Renewable Energy Sources (pp 42–48): February 2–3, 2012. New Delhi: Himanshu Publication, ISBN-978-81-7906-312. Ranjan, K. R., & Kaushik, S. C. (2012). Energetic and exergetic efficiency of a single effect basin passive solar still. Proceedings of National Seminar on Power Generation from Renewable Energy Sources (pp 42–48): February 2–3, 2012. New Delhi: Himanshu Publication, ISBN-978-81-7906-312.
Zurück zum Zitat Reddy, V. S., Kaushik, S. C., & Tyagi, S. K. (2012). Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP). Energy, 39, 258–273.CrossRef Reddy, V. S., Kaushik, S. C., & Tyagi, S. K. (2012). Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP). Energy, 39, 258–273.CrossRef
Zurück zum Zitat Saidur, R., BoroumandJazi, G., Mekhlif, S., & Jameel, M. (2012). Exergy analysis of solar energy applications. Renewable and Sustainable Energy Reviews, 16, 350–356.CrossRef Saidur, R., BoroumandJazi, G., Mekhlif, S., & Jameel, M. (2012). Exergy analysis of solar energy applications. Renewable and Sustainable Energy Reviews, 16, 350–356.CrossRef
Zurück zum Zitat Sampathkumar, K., & Senthilkumar, P. (2012). Utilization of solar water heater in a single basin solar still—an experimental study. Desalination, 297, 8–19.CrossRef Sampathkumar, K., & Senthilkumar, P. (2012). Utilization of solar water heater in a single basin solar still—an experimental study. Desalination, 297, 8–19.CrossRef
Zurück zum Zitat Sow, O., Siroux, M., & Desmet, B. (2005). Energetic and exergetic analysis of a triple effect distiller driven by solar energy. Desalination, 174, 277–286.CrossRef Sow, O., Siroux, M., & Desmet, B. (2005). Energetic and exergetic analysis of a triple effect distiller driven by solar energy. Desalination, 174, 277–286.CrossRef
Zurück zum Zitat Tiwari, G. N., & Tiwari, A. K. (2007). Solar distillation practice for water desalination systems. New Delhi: Anamaya. Tiwari, G. N., & Tiwari, A. K. (2007). Solar distillation practice for water desalination systems. New Delhi: Anamaya.
Zurück zum Zitat Tiwari, G. N., Singh, H. N., & Tripathi, R. (2003). Present status of solar distillation. Solar Energy, 75, 367–373.CrossRef Tiwari, G. N., Singh, H. N., & Tripathi, R. (2003). Present status of solar distillation. Solar Energy, 75, 367–373.CrossRef
Zurück zum Zitat Torchia-Nunez, J. C., Porta-Gandara, M. A., & Cervantes-de Gortari, J. G. (2008). Exergy analysis of a passive solar still. Renewable Energy, 33, 608–616.CrossRef Torchia-Nunez, J. C., Porta-Gandara, M. A., & Cervantes-de Gortari, J. G. (2008). Exergy analysis of a passive solar still. Renewable Energy, 33, 608–616.CrossRef
Zurück zum Zitat Tsilingiris, P. T. (2009). Analysis of the heat and mass transfer processes in solar stills—the validation of a model. Solar Energy, 83, 420–431.CrossRef Tsilingiris, P. T. (2009). Analysis of the heat and mass transfer processes in solar stills—the validation of a model. Solar Energy, 83, 420–431.CrossRef
Zurück zum Zitat Umarov, G. Y., Achilov, B. M., Zhuraev, T. D., & Akhtamov, R. (1972). Water distillation by solar energy and winter cold. Geliotekhnika, 8(6), 62–65. Umarov, G. Y., Achilov, B. M., Zhuraev, T. D., & Akhtamov, R. (1972). Water distillation by solar energy and winter cold. Geliotekhnika, 8(6), 62–65.
Zurück zum Zitat Wattmuff, J. H., Charters, W. W. S., Proctor, D. (1977). Solar and wind induced external coefficients-solar collectors. Cooperation Mediterraneenne pour l'Energie Solaire, Revue Internationale d'Heliotechnique, 2nd Quarter, p. 56. Wattmuff, J. H., Charters, W. W. S., Proctor, D. (1977). Solar and wind induced external coefficients-solar collectors. Cooperation Mediterraneenne pour l'Energie Solaire, Revue Internationale d'Heliotechnique, 2nd Quarter, p. 56.
Metadaten
Titel
Optimum exergy efficiency of single-effect ideal passive solar stills
verfasst von
S. C. Kaushik
K. R. Ranjan
N. L. Panwar
Publikationsdatum
01.08.2013
Verlag
Springer Netherlands
Erschienen in
Energy Efficiency / Ausgabe 3/2013
Print ISSN: 1570-646X
Elektronische ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-013-9194-x

Weitere Artikel der Ausgabe 3/2013

Energy Efficiency 3/2013 Zur Ausgabe