Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

26.09.2020

Optimum Power Allocation Based on Channel Conditions in Optical Satellite Downlinks

verfasst von: Theodore T. Kapsis, Athanasios D. Panagopoulos

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The integration of optical satellite links in the next-generation networks and in the fifth generation cellular systems has been proposed in order to guarantee the handling of the extreme data traffic growth and the high-pitched demand for networks’ resources. The optical satellite communication downlink is studied and more specifically, a geostationary satellite with multiple transmitters and an optical ground station with multiple receiving terminals are considered. In this contribution a novel power allocation methodology is proposed for the downlink. The allocation methodology takes into account the scintillation effects due to atmospheric turbulence and maximizes the ergodic network capacity under total expected power and peak power constraints. The analytical optimizing schemes are based on convex optimization methods and have been inspired by waterfilling algorithm. We present emulated power allocation results using real experimental downlink data from ARTEMIS optical satellite campaign and then we investigate the performance of the proposed algorithm with extended numerical results and comparison with other allocation policies. In particular, the new power allocation strategy achieves the highest spectral efficiency, according to the power constraints, for various channel conditions and attenuation profiles and also surpasses two simple baseband allocation methods by intelligently taking advantage of the number of channels and the total expected power.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liolis, K., Geurtz, A., & Sperber, R., et al. (2019). Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: The SaT5G approach. International Journal of Satellite Communications, 37(2), 91–112. Liolis, K., Geurtz, A., & Sperber, R., et al. (2019). Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: The SaT5G approach. International Journal of Satellite Communications, 37(2), 91–112.
2.
Zurück zum Zitat Sharma, S. K., Chatzinotas, S., & Arapoglou, P. D. (2018). Satellite communications in the 5G era. London: The Institution of Engineering and Technology.CrossRef Sharma, S. K., Chatzinotas, S., & Arapoglou, P. D. (2018). Satellite communications in the 5G era. London: The Institution of Engineering and Technology.CrossRef
3.
Zurück zum Zitat Jaber, M., Imran, M. A., Tafazolli, R., et al. (2016). 5G backhaul challenges and emerging research directions: A survey. IEEE Access, 4, 1743–1766.CrossRef Jaber, M., Imran, M. A., Tafazolli, R., et al. (2016). 5G backhaul challenges and emerging research directions: A survey. IEEE Access, 4, 1743–1766.CrossRef
4.
Zurück zum Zitat Hemmati, H. (2009). Near-earth laser communications. Boca Raton: CRC Press. Hemmati, H. (2009). Near-earth laser communications. Boca Raton: CRC Press.
5.
Zurück zum Zitat Kaushal, H., & Kaddoum, G. (2016). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials, 19, 57–96.CrossRef Kaushal, H., & Kaddoum, G. (2016). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials, 19, 57–96.CrossRef
6.
Zurück zum Zitat Andrews, L., & Phillips, R. (2005). Laser beam propagation through random media. Bellingham, WA: SPIE Press.CrossRef Andrews, L., & Phillips, R. (2005). Laser beam propagation through random media. Bellingham, WA: SPIE Press.CrossRef
7.
Zurück zum Zitat Lyras, N. K., Kourogiorgas, C. I., & Panagopoulos, A. D. (2017). Cloud attenuation statistics prediction from ka-band to optical frequencies: Integrated liquid water content field synthesizer. IEEE Transactions on Antennas and Propagation, 65, 319–328.CrossRef Lyras, N. K., Kourogiorgas, C. I., & Panagopoulos, A. D. (2017). Cloud attenuation statistics prediction from ka-band to optical frequencies: Integrated liquid water content field synthesizer. IEEE Transactions on Antennas and Propagation, 65, 319–328.CrossRef
8.
Zurück zum Zitat Lyras, N. K., Kourogiorgas, C. I., & Panagopoulos, A. D. (2017). Cloud free line of sight prediction modelling for optical satellite communication network. IEEE Communications Letters, 21, 1537–1540.CrossRef Lyras, N. K., Kourogiorgas, C. I., & Panagopoulos, A. D. (2017). Cloud free line of sight prediction modelling for optical satellite communication network. IEEE Communications Letters, 21, 1537–1540.CrossRef
9.
Zurück zum Zitat Kourogiorgas, C. I., Lyras, N. K., Panagopoulos, A. D., Tarchi, D., Vanelli-Coralli, A., Ugolini, A., et al. (2017). Capacity statistics evaluation for next generation broadband MEO satellite systems. IEEE Transactions on Aerospace and Electronic Systems, 53, 2344–2358.CrossRef Kourogiorgas, C. I., Lyras, N. K., Panagopoulos, A. D., Tarchi, D., Vanelli-Coralli, A., Ugolini, A., et al. (2017). Capacity statistics evaluation for next generation broadband MEO satellite systems. IEEE Transactions on Aerospace and Electronic Systems, 53, 2344–2358.CrossRef
10.
Zurück zum Zitat Lyras, N. K., Efrem, C. N., Kourogiorgas, C. I., & Panagopoulos, A. D. (2019). Medium earth orbit optical satellite communication networks: Ground terminals selection optimization based on the cloud-free line-of-sight statistics. International Journal of Satellite Communications, 37(4), 370–384. Lyras, N. K., Efrem, C. N., Kourogiorgas, C. I., & Panagopoulos, A. D. (2019). Medium earth orbit optical satellite communication networks: Ground terminals selection optimization based on the cloud-free line-of-sight statistics. International Journal of Satellite Communications, 37(4), 370–384.
12.
Zurück zum Zitat Scutari, G., Palomar, D. P., & Barbarossa, S. (2009). The MIMO iterative waterfilling algorithm. IEEE Transactions on Signal Processing, 57(5), 1917–1935.MathSciNetCrossRef Scutari, G., Palomar, D. P., & Barbarossa, S. (2009). The MIMO iterative waterfilling algorithm. IEEE Transactions on Signal Processing, 57(5), 1917–1935.MathSciNetCrossRef
13.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRef Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRef
14.
Zurück zum Zitat Bertsekas, D. P. (1982). Constrained optimization and lagrange multiplier methods. New York: Academic Press.MATH Bertsekas, D. P. (1982). Constrained optimization and lagrange multiplier methods. New York: Academic Press.MATH
15.
Zurück zum Zitat Kapsis, T. T., Lyras, N. K., & Panagopoulos, A. D. (2019). Long term irradiance statistics for optical geo downlinks: Validation with artemis experimental measurements. Progress In Electromagnetics Research, 82, 89–94.CrossRef Kapsis, T. T., Lyras, N. K., & Panagopoulos, A. D. (2019). Long term irradiance statistics for optical geo downlinks: Validation with artemis experimental measurements. Progress In Electromagnetics Research, 82, 89–94.CrossRef
16.
Zurück zum Zitat Kapsis, T. T., Lyras, N. K., Kourogiorgas, C. I., & Panagopoulos, A. D. (2019). Time series irradiance synthesizer for optical geo satellite downlinks in 5g networks. Future Internet, 11(6), 131.CrossRef Kapsis, T. T., Lyras, N. K., Kourogiorgas, C. I., & Panagopoulos, A. D. (2019). Time series irradiance synthesizer for optical geo satellite downlinks in 5g networks. Future Internet, 11(6), 131.CrossRef
17.
Zurück zum Zitat Kolev, D. R., & Toyoshima, M. (2017). Satellite-to-ground optical communications using small optical transponder (SOTA): Received-power fluctuations. Optics Express, 25(23), 28319–28329.CrossRef Kolev, D. R., & Toyoshima, M. (2017). Satellite-to-ground optical communications using small optical transponder (SOTA): Received-power fluctuations. Optics Express, 25(23), 28319–28329.CrossRef
18.
Zurück zum Zitat Yeaseen, M. H., Azam, F., Saha, S., & Islam, A. K. M. (2015). Free-space optical communication with BPSK subcarrier intensity modulation in presence of atmospheric turbulence and pointing error. In 18th International conference on computer and information technology, ICCIT, Dhaka, pp. 516–521. Yeaseen, M. H., Azam, F., Saha, S., & Islam, A. K. M. (2015). Free-space optical communication with BPSK subcarrier intensity modulation in presence of atmospheric turbulence and pointing error. In 18th International conference on computer and information technology, ICCIT, Dhaka, pp. 516–521.
19.
Zurück zum Zitat Goldsmith, A. J., & Varaiya, P. P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.MathSciNetCrossRef Goldsmith, A. J., & Varaiya, P. P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.MathSciNetCrossRef
20.
Zurück zum Zitat Nistazakis, H. E., Karagianni, E. A., Tsigopoulos, A. D., Fafalios, M. E., & Tombras, G. S. (2009). Average capacity of optical wireless communication systems over atmospheric turbulence channels. Journal of Lightwave Technology, 27(8), 974–979.CrossRef Nistazakis, H. E., Karagianni, E. A., Tsigopoulos, A. D., Fafalios, M. E., & Tombras, G. S. (2009). Average capacity of optical wireless communication systems over atmospheric turbulence channels. Journal of Lightwave Technology, 27(8), 974–979.CrossRef
21.
Zurück zum Zitat Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications, 3(8), 1402–1409.CrossRef Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications, 3(8), 1402–1409.CrossRef
22.
Zurück zum Zitat Dabiri, M. T., Saber, M. J., & Sadough, S. M. S. (2017). On the performance of multiplexing FSO MIMO links in log-normal fading with pointing errors. Journal of Optical Communications and Networking, 9(11), 974–983.CrossRef Dabiri, M. T., Saber, M. J., & Sadough, S. M. S. (2017). On the performance of multiplexing FSO MIMO links in log-normal fading with pointing errors. Journal of Optical Communications and Networking, 9(11), 974–983.CrossRef
23.
Zurück zum Zitat Gao, Z., Eisen, M., & Ribeiro, A. (2019). Optimal WDM power allocation via deep learning for radio on free space optics systems. In IEEE global communications conference (GLOBECOM) (pp. 1–6). Waikoloa, HI. Gao, Z., Eisen, M., & Ribeiro, A. (2019). Optimal WDM power allocation via deep learning for radio on free space optics systems. In IEEE global communications conference (GLOBECOM) (pp. 1–6). Waikoloa, HI.
24.
Zurück zum Zitat Zhou, H., Mao, S., & Agrawal, P. (2015). Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks. Digital Communication Network, 1, 171–180.CrossRef Zhou, H., Mao, S., & Agrawal, P. (2015). Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks. Digital Communication Network, 1, 171–180.CrossRef
25.
Zurück zum Zitat An, K., Liang, T., Yan, X., Li, Y., & Qiao, X. (2018). Power allocation in land mobile satellite systems: An energy-efficient perspective. IEEE Communications Letters, 22(7), 1374–1377.CrossRef An, K., Liang, T., Yan, X., Li, Y., & Qiao, X. (2018). Power allocation in land mobile satellite systems: An energy-efficient perspective. IEEE Communications Letters, 22(7), 1374–1377.CrossRef
26.
Zurück zum Zitat Süli, E., & Mayers, D. (2003). An introduction to numerical analysis. Cambridge: Cambridge University Press.CrossRef Süli, E., & Mayers, D. (2003). An introduction to numerical analysis. Cambridge: Cambridge University Press.CrossRef
27.
Zurück zum Zitat Bertsekas, D. P. (1999). Nonlinear programming. Belmont: Athena Scientific.MATH Bertsekas, D. P. (1999). Nonlinear programming. Belmont: Athena Scientific.MATH
28.
Zurück zum Zitat Kotchasarn, C. (2008). Joint power allocation for multi-user uplink mimo transmissions with imperfect CSI. In International symposium on communications and information technologies, Lao (pp. 121–125). Kotchasarn, C. (2008). Joint power allocation for multi-user uplink mimo transmissions with imperfect CSI. In International symposium on communications and information technologies, Lao (pp. 121–125).
29.
Zurück zum Zitat Toyoshima, M., et al. (2005). Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link. IEEE Transactions on Antennas and Propagation, 53(2), 842–850.CrossRef Toyoshima, M., et al. (2005). Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link. IEEE Transactions on Antennas and Propagation, 53(2), 842–850.CrossRef
30.
Zurück zum Zitat Dios, F., et al. (2004). Scintillation and beam-wander analysis in an optical ground station–satellite uplink. Applied Optics, 43(19), 3866–3873.CrossRef Dios, F., et al. (2004). Scintillation and beam-wander analysis in an optical ground station–satellite uplink. Applied Optics, 43(19), 3866–3873.CrossRef
31.
Zurück zum Zitat Barrios, R. (2020). Fading loss for earth-to-space lasercom affected by scintillation and beam wander composite channel. Optical Engineering, 59(5), 056103.CrossRef Barrios, R. (2020). Fading loss for earth-to-space lasercom affected by scintillation and beam wander composite channel. Optical Engineering, 59(5), 056103.CrossRef
Metadaten
Titel
Optimum Power Allocation Based on Channel Conditions in Optical Satellite Downlinks
verfasst von
Theodore T. Kapsis
Athanasios D. Panagopoulos
Publikationsdatum
26.09.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07831-z

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt