Skip to main content

2022 | OriginalPaper | Buchkapitel

10. Optofluidic Devices for Bioanalytical Applications

verfasst von : Hui Yang, Martin A. M. Gijs

Erschienen in: Advanced MEMS/NEMS Fabrication and Sensors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optofluidics, nominally merging micro-optics and microfluidic technologies, is a relatively new research field, and it has begun to draw large attentions in the last decade. Given its abilities to manipulate both optic and fluidic functions/elements in the micro−/nano-meter regime, optofluidics shows great potential in bioanalytical applications. This chapter provides an overview of optofluidic systems for tackling a variety of analytical tasks, including chemical analysis, nucleic acid and protein detection, and cell biology applications. The chapter starts with an introduction of microfluidic and optic technologies, continues with emphasis on the realization of different optofluidic systems and their applications, and concludes by giving our perspectives on optofluidic systems for bioanalytical applications in the near future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aparicio, F. J., Froner, E., Rigo, E., Gandolfi, D., Scarpa, M., Han, B., Ghulinyan, M., Pucker, G., & Pavesi, L. (2014). Silicon oxynitride waveguides as evanescent-field-based fluorescent biosensors. Journal of Physics D: Applied Physics, 47, 405401.CrossRef Aparicio, F. J., Froner, E., Rigo, E., Gandolfi, D., Scarpa, M., Han, B., Ghulinyan, M., Pucker, G., & Pavesi, L. (2014). Silicon oxynitride waveguides as evanescent-field-based fluorescent biosensors. Journal of Physics D: Applied Physics, 47, 405401.CrossRef
Zurück zum Zitat Arpali, S. A., Arpali, C., Coskun, A. F., Chiang, H.-H., & Ozcan, A. (2012). High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab on a Chip, 12, 4968–4971.CrossRef Arpali, S. A., Arpali, C., Coskun, A. F., Chiang, H.-H., & Ozcan, A. (2012). High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab on a Chip, 12, 4968–4971.CrossRef
Zurück zum Zitat Brennan, D., Lambkin, P., Moore, E. J., & Galvin, P. (2008). An integrated optofluidic platform for DNA hybridization and detection. IEEE Sensors Journal, 8, 536–542.CrossRef Brennan, D., Lambkin, P., Moore, E. J., & Galvin, P. (2008). An integrated optofluidic platform for DNA hybridization and detection. IEEE Sensors Journal, 8, 536–542.CrossRef
Zurück zum Zitat Brown, M., Vestad, T., Oakey, J., & Marr, D. W. M. (2006). Optical waveguides via viscosity-mismatched microfluidic flows. Applied Physics Letters, 88, 134109.CrossRef Brown, M., Vestad, T., Oakey, J., & Marr, D. W. M. (2006). Optical waveguides via viscosity-mismatched microfluidic flows. Applied Physics Letters, 88, 134109.CrossRef
Zurück zum Zitat Bruls, D. M., Evers, T. H., Kahlman, J. A. H., Lankvelt, P. J. W. V., Ovsyanko, M., Pelssers, E. G. M., Schleipen, J. J. H. B., Theije, F. K. D., Verschuren, C. A., Wijk, T. V. D., Zon, J. B. A. V., Dittmer, W. U., Immink, A. H. J., Nieuwenhuis, J. H., & Prins, M. W. J. (2009). Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab on a Chip, 9, 3504–3510.CrossRef Bruls, D. M., Evers, T. H., Kahlman, J. A. H., Lankvelt, P. J. W. V., Ovsyanko, M., Pelssers, E. G. M., Schleipen, J. J. H. B., Theije, F. K. D., Verschuren, C. A., Wijk, T. V. D., Zon, J. B. A. V., Dittmer, W. U., Immink, A. H. J., Nieuwenhuis, J. H., & Prins, M. W. J. (2009). Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab on a Chip, 9, 3504–3510.CrossRef
Zurück zum Zitat Cai, H., Parks, J. W., Wall, T. A., Stott, M. A., Stambaugh, A., Alfson, K., Griffiths, A., Mathies, R. A., Carrion, R., Patterson, J. L., Hawkins, A. R., & Schmidt, H. (2015). Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Scientific Reports, 5, 14494.CrossRef Cai, H., Parks, J. W., Wall, T. A., Stott, M. A., Stambaugh, A., Alfson, K., Griffiths, A., Mathies, R. A., Carrion, R., Patterson, J. L., Hawkins, A. R., & Schmidt, H. (2015). Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Scientific Reports, 5, 14494.CrossRef
Zurück zum Zitat Campbell, K., Groisman, A., Levy, U., Pang, L., Mookherjea, S., Psaltis, D., & Fainman, Y. (2004). A microfluidic 2 × 2 optical switch. Applied Physics Letters, 85, 6119–6121.CrossRef Campbell, K., Groisman, A., Levy, U., Pang, L., Mookherjea, S., Psaltis, D., & Fainman, Y. (2004). A microfluidic 2 × 2 optical switch. Applied Physics Letters, 85, 6119–6121.CrossRef
Zurück zum Zitat Carney, P. S., & Schotland, J. C. (2001). Three-dimensional total internal reflection microscopy. Optics Letters, 26, 1072–1074.CrossRef Carney, P. S., & Schotland, J. C. (2001). Three-dimensional total internal reflection microscopy. Optics Letters, 26, 1072–1074.CrossRef
Zurück zum Zitat Chao, K.-S., Lin, M.-S., & Yang, R.-J. (2013). An in-plane optofluidic microchip for focal point control. Lab on a Chip, 13, 3886–3892.CrossRef Chao, K.-S., Lin, M.-S., & Yang, R.-J. (2013). An in-plane optofluidic microchip for focal point control. Lab on a Chip, 13, 3886–3892.CrossRef
Zurück zum Zitat Chen, Z., Taflove, A., & Backman, V. (2004). Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Optics Express, 12, 1214–1220.CrossRef Chen, Z., Taflove, A., & Backman, V. (2004). Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Optics Express, 12, 1214–1220.CrossRef
Zurück zum Zitat Chen, Y., Wu, T.-H., Kung, Y.-C., Teitell, M. A., & Chiou, P.-Y. (2013). 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter. Analyst, 138, 7308–7315.CrossRef Chen, Y., Wu, T.-H., Kung, Y.-C., Teitell, M. A., & Chiou, P.-Y. (2013). 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter. Analyst, 138, 7308–7315.CrossRef
Zurück zum Zitat Chen, S., Hao, R., Zhang, Y., & Yang, H. (2019). Optofluidics in bio-imaging applications. Photonics Research, 7, 532–542.CrossRef Chen, S., Hao, R., Zhang, Y., & Yang, H. (2019). Optofluidics in bio-imaging applications. Photonics Research, 7, 532–542.CrossRef
Zurück zum Zitat Cho, S. H., Chen, C. H., Tsai, F. S., Godin, J. M., & Lo, Y.-H. (2010a). Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). Lab on a Chip, 10, 1567–1573.CrossRef Cho, S. H., Chen, C. H., Tsai, F. S., Godin, J. M., & Lo, Y.-H. (2010a). Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). Lab on a Chip, 10, 1567–1573.CrossRef
Zurück zum Zitat Cho, S. H., Godin, J. M., Chen, C.-H., Qiao, W., Lee, H., & Lo, Y.-H. (2010b). Recent advancements in optofluidic flow cytometer. Biomicrofluidics, 4, 043001.CrossRef Cho, S. H., Godin, J. M., Chen, C.-H., Qiao, W., Lee, H., & Lo, Y.-H. (2010b). Recent advancements in optofluidic flow cytometer. Biomicrofluidics, 4, 043001.CrossRef
Zurück zum Zitat Cui, X., Lee, L. M., Heng, X., Zhong, W., Sternberg, P. W., Psaltis, D., & Yang, C. (2008). Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proceedings of the National Academy of Sciences of the United States of America, 105, 10670–10675.CrossRef Cui, X., Lee, L. M., Heng, X., Zhong, W., Sternberg, P. W., Psaltis, D., & Yang, C. (2008). Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proceedings of the National Academy of Sciences of the United States of America, 105, 10670–10675.CrossRef
Zurück zum Zitat Darafsheh, A., Walsh, G. F., Negro, L. D., & Astratov, V. N. (2012). Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters, 101, 141128.CrossRef Darafsheh, A., Walsh, G. F., Negro, L. D., & Astratov, V. N. (2012). Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters, 101, 141128.CrossRef
Zurück zum Zitat De Tommasi, E., De Luca, A. C., Lavanga, L., Dardano, P., De Stefano, M., De Stefano, L., Langella, C., Rendina, I., Dholakia, K., & Mazilu, M. (2014). Biologically enabled sub-diffractive focusing. Optics Express, 22, 27214–27227.CrossRef De Tommasi, E., De Luca, A. C., Lavanga, L., Dardano, P., De Stefano, M., De Stefano, L., Langella, C., Rendina, I., Dholakia, K., & Mazilu, M. (2014). Biologically enabled sub-diffractive focusing. Optics Express, 22, 27214–27227.CrossRef
Zurück zum Zitat Dittmer, W. U., Evers, T. H., Hardeman, W. M., Huijnen, W., Kamps, R., Kievit, P. D., Neijzen, J. H. M., Nieuwenhuis, J. H., Sijbers, M. J. J., Dekkers, D. W. C., Hefti, M. H., & Martens, M. F. W. C. (2010). Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor. Clinica Chimica Acta, 411, 868–873.CrossRef Dittmer, W. U., Evers, T. H., Hardeman, W. M., Huijnen, W., Kamps, R., Kievit, P. D., Neijzen, J. H. M., Nieuwenhuis, J. H., Sijbers, M. J. J., Dekkers, D. W. C., Hefti, M. H., & Martens, M. F. W. C. (2010). Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor. Clinica Chimica Acta, 411, 868–873.CrossRef
Zurück zum Zitat Dong, L., Agarwal, A. K., Beebe, D. J., & Jiang, H. (2006). Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 442, 551–554.CrossRef Dong, L., Agarwal, A. K., Beebe, D. J., & Jiang, H. (2006). Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 442, 551–554.CrossRef
Zurück zum Zitat Duffy, D. C., McDonald, J. C., Schueller, O. J. A., & Whitesides, G. M. (1998). Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, 70, 4974–4984.CrossRef Duffy, D. C., McDonald, J. C., Schueller, O. J. A., & Whitesides, G. M. (1998). Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, 70, 4974–4984.CrossRef
Zurück zum Zitat Erickson, D., Sinton, D., & Psaltis, D. (2011). Optofluidics for energy applications. Nature Photonics, 5, 583–590.CrossRef Erickson, D., Sinton, D., & Psaltis, D. (2011). Optofluidics for energy applications. Nature Photonics, 5, 583–590.CrossRef
Zurück zum Zitat Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5, 591–597.CrossRef Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5, 591–597.CrossRef
Zurück zum Zitat Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620, 8–26.CrossRef Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620, 8–26.CrossRef
Zurück zum Zitat Fang, N., Lee, H., Sun, C., & Zhang, X. (2005). Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534–537.CrossRef Fang, N., Lee, H., Sun, C., & Zhang, X. (2005). Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534–537.CrossRef
Zurück zum Zitat Fang, C., Dai, B., Xu, Q., Zhuo, R., Wang, Q., Wang, X., & Zhang, D. (2017). Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave. Optics Express, 25, 888–897.CrossRef Fang, C., Dai, B., Xu, Q., Zhuo, R., Wang, Q., Wang, X., & Zhang, D. (2017). Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave. Optics Express, 25, 888–897.CrossRef
Zurück zum Zitat Gattass, R. R., & Mazur, E. (2008). Femtosecond laser micromachining in transparent materials. Nature Photonics, 2, 219–225.CrossRef Gattass, R. R., & Mazur, E. (2008). Femtosecond laser micromachining in transparent materials. Nature Photonics, 2, 219–225.CrossRef
Zurück zum Zitat Gérard, D., Wenger, J., Devilez, A., Gachet, D., Stout, B., Bonod, N., Popov, E., & Rigneault, H. (2008). Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Optics Express, 16, 15297–15303.CrossRef Gérard, D., Wenger, J., Devilez, A., Gachet, D., Stout, B., Bonod, N., Popov, E., & Rigneault, H. (2008). Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Optics Express, 16, 15297–15303.CrossRef
Zurück zum Zitat Godin, J., Chen, C.-H., Cho, S. H., Qiao, W., Tsai, F., & Lo, Y.-H. (2008). Microfluidics and photonics for bio-system-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip. Journal of Biophotonics, 1, 355–376.CrossRef Godin, J., Chen, C.-H., Cho, S. H., Qiao, W., Tsai, F., & Lo, Y.-H. (2008). Microfluidics and photonics for bio-system-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip. Journal of Biophotonics, 1, 355–376.CrossRef
Zurück zum Zitat Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S. O., Coskun, A. F., Mudanyali, O., & Ozcan, A. (2012). Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy. Nature Methods, 9, 889–895.CrossRef Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S. O., Coskun, A. F., Mudanyali, O., & Ozcan, A. (2012). Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy. Nature Methods, 9, 889–895.CrossRef
Zurück zum Zitat Guo, F., Lapsley, M. I., Nawaz, A. A., Zhao, Y., Lin, S.-C. S., Chen, Y., Yang, S., Zhao, X.-Z., & Huang, T. J. (2012). A droplet-based, optofluidic device for high-throughput, quantitative bioanalysis. Analytical Chemistry, 84, 10745–10749.CrossRef Guo, F., Lapsley, M. I., Nawaz, A. A., Zhao, Y., Lin, S.-C. S., Chen, Y., Yang, S., Zhao, X.-Z., & Huang, T. J. (2012). A droplet-based, optofluidic device for high-throughput, quantitative bioanalysis. Analytical Chemistry, 84, 10745–10749.CrossRef
Zurück zum Zitat Gupta, R., & Goddard, N. J. (2013). A novel leaky waveguide grating (LWG) device for evanescent wave broadband absorption spectroscopy in microfluidic flow cells. Analyst, 138, 1803–1811.CrossRef Gupta, R., & Goddard, N. J. (2013). A novel leaky waveguide grating (LWG) device for evanescent wave broadband absorption spectroscopy in microfluidic flow cells. Analyst, 138, 1803–1811.CrossRef
Zurück zum Zitat Haeberle, S., & Zengerle, R. (2007). Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip, 7, 1094–1110.CrossRef Haeberle, S., & Zengerle, R. (2007). Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip, 7, 1094–1110.CrossRef
Zurück zum Zitat Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. The New England Journal of Medicine, 363, 301–304.CrossRef Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. The New England Journal of Medicine, 363, 301–304.CrossRef
Zurück zum Zitat Hanumegowda, N. M., Stica, C. J., Patel, B. C., White, I., & Fan, X. (2005). Refractometric sensors based on microsphere resonators. Applied Physics Letters, 87, 201107.CrossRef Hanumegowda, N. M., Stica, C. J., Patel, B. C., White, I., & Fan, X. (2005). Refractometric sensors based on microsphere resonators. Applied Physics Letters, 87, 201107.CrossRef
Zurück zum Zitat Harrick, N. J. (1962). Use of frustrated total internal reflection to measure film thickness and surface reliefs. Journal of Applied Physics, 33, 2774–2775.CrossRef Harrick, N. J. (1962). Use of frustrated total internal reflection to measure film thickness and surface reliefs. Journal of Applied Physics, 33, 2774–2775.CrossRef
Zurück zum Zitat Hawkins, A. R., & Schmidt, H. (2008). Optofluidic waveguides: II. Fabrication and structures. Microfluidics and Nanofluidics, 4, 17–32.CrossRef Hawkins, A. R., & Schmidt, H. (2008). Optofluidic waveguides: II. Fabrication and structures. Microfluidics and Nanofluidics, 4, 17–32.CrossRef
Zurück zum Zitat Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A., & Backman, V. (2009). Photonic nanojets. Journal of Computational and Theoretical Nanoscience, 6, 1979–1992.CrossRef Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A., & Backman, V. (2009). Photonic nanojets. Journal of Computational and Theoretical Nanoscience, 6, 1979–1992.CrossRef
Zurück zum Zitat Helmerhorst, E., Chandler, D. J., Nussio, M., & Mamotte, C. D. (2012). Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: A laboratory medicine perspective. Clinical Biochemist Reviews, 33, 161–173. Helmerhorst, E., Chandler, D. J., Nussio, M., & Mamotte, C. D. (2012). Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: A laboratory medicine perspective. Clinical Biochemist Reviews, 33, 161–173.
Zurück zum Zitat Hofmann, O., Miller, P., Sullivan, P., Jones, T. S., de Mello, J. C., Bradley, D. D. C., & de Mello, A. J. (2005). Thin-film organic photodiodes as integrated detectors for microscale chemiluminescence assays. Sensors and Actuators B: Chemical, 106, 878–884.CrossRef Hofmann, O., Miller, P., Sullivan, P., Jones, T. S., de Mello, J. C., Bradley, D. D. C., & de Mello, A. J. (2005). Thin-film organic photodiodes as integrated detectors for microscale chemiluminescence assays. Sensors and Actuators B: Chemical, 106, 878–884.CrossRef
Zurück zum Zitat Hu, Y., Rao, S., Wu, S., Wei, P., Qiu, W., Wu, D., Xu, B., Ni, J., Yang, L., Li, J., Chu, J., & Sugioka, K. (2018). All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Advanced Optical Materials, 6, 1701299.CrossRef Hu, Y., Rao, S., Wu, S., Wei, P., Qiu, W., Wu, D., Xu, B., Ni, J., Yang, L., Li, J., Chu, J., & Sugioka, K. (2018). All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Advanced Optical Materials, 6, 1701299.CrossRef
Zurück zum Zitat Huang, P.-H., Lapsley, M. I., Ahmed, D., Chen, Y., Wang, L., & Huang, T. J. (2012). A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles. Applied Physics Letters, 101, 141101.CrossRef Huang, P.-H., Lapsley, M. I., Ahmed, D., Chen, Y., Wang, L., & Huang, T. J. (2012). A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles. Applied Physics Letters, 101, 141101.CrossRef
Zurück zum Zitat Huang, N.-T., Zhang, H.-L., Chung, M.-T., Seo, J. H., & Kurabayashi, K. (2014). Recent advancements in optofluidics-based single-cell analysis: Optical on-chip cellular manipulation, treatment, and property detection. Lab on a Chip, 14, 1230–1245.CrossRef Huang, N.-T., Zhang, H.-L., Chung, M.-T., Seo, J. H., & Kurabayashi, K. (2014). Recent advancements in optofluidics-based single-cell analysis: Optical on-chip cellular manipulation, treatment, and property detection. Lab on a Chip, 14, 1230–1245.CrossRef
Zurück zum Zitat Ibarlucea, B., Fernandez-Rosas, E., Vila-Planas, J., Demming, S., Nogúes, C., Plaza, J. A., Büttgenbach, S., & Llobera, A. (2010). Cell screening using disposable photonic lab on a chip systems. Analytical Chemistry, 82, 4246–4251.CrossRef Ibarlucea, B., Fernandez-Rosas, E., Vila-Planas, J., Demming, S., Nogúes, C., Plaza, J. A., Büttgenbach, S., & Llobera, A. (2010). Cell screening using disposable photonic lab on a chip systems. Analytical Chemistry, 82, 4246–4251.CrossRef
Zurück zum Zitat Jiang, X., Song, Q., Xu, L., Fu, J., & Tong, L. (2007). Microfiber knot dye laser based on the evanescent-wave-coupled gain. Applied Physics Letters, 90, 233501.CrossRef Jiang, X., Song, Q., Xu, L., Fu, J., & Tong, L. (2007). Microfiber knot dye laser based on the evanescent-wave-coupled gain. Applied Physics Letters, 90, 233501.CrossRef
Zurück zum Zitat Jung, K.-H., & Lee, K.-H. (2015). Molecular imaging in the era of personalized medicine. Journal of Pathology and Translational Medicine, 49, 5–12.CrossRef Jung, K.-H., & Lee, K.-H. (2015). Molecular imaging in the era of personalized medicine. Journal of Pathology and Translational Medicine, 49, 5–12.CrossRef
Zurück zum Zitat Kamei, T., Paegel, B. M., Scherer, J. R., Skelley, A. M., Street, R. A., & Mathies, R. A. (2003). Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices. Analytical Chemistry, 75, 5300–5305.CrossRef Kamei, T., Paegel, B. M., Scherer, J. R., Skelley, A. M., Street, R. A., & Mathies, R. A. (2003). Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices. Analytical Chemistry, 75, 5300–5305.CrossRef
Zurück zum Zitat Kasahara, T., Matsunami, S., Edura, T., Oshima, J., Adachi, C., Shoji, S., & Mizuno, J. (2013). Fabrication and performance evaluation of microfluidic organic light emitting diode. Sensors and Actuators A, 195, 219–223.CrossRef Kasahara, T., Matsunami, S., Edura, T., Oshima, J., Adachi, C., Shoji, S., & Mizuno, J. (2013). Fabrication and performance evaluation of microfluidic organic light emitting diode. Sensors and Actuators A, 195, 219–223.CrossRef
Zurück zum Zitat Kemmler, M., Koger, B., Sulz, G., Sauer, U., Schleicher, E., Preininger, C., & Brandenburg, A. (2009). Compact point-of-care system for clinical diagnostics. Sensors and Actuators B: Chemical, 139, 44–51.CrossRef Kemmler, M., Koger, B., Sulz, G., Sauer, U., Schleicher, E., Preininger, C., & Brandenburg, A. (2009). Compact point-of-care system for clinical diagnostics. Sensors and Actuators B: Chemical, 139, 44–51.CrossRef
Zurück zum Zitat Kopp, D., Lehmann, L., & Zappe, H. (2016). Optofluidic laser scanner based on a rotating liquid prism. Applied Optics, 55, 2136–2142.CrossRef Kopp, D., Lehmann, L., & Zappe, H. (2016). Optofluidic laser scanner based on a rotating liquid prism. Applied Optics, 55, 2136–2142.CrossRef
Zurück zum Zitat Lee, H., Liu, Y., Ham, D., & Westervelt, R. M. (2007). Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab on a Chip, 7, 331–337.CrossRef Lee, H., Liu, Y., Ham, D., & Westervelt, R. M. (2007). Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab on a Chip, 7, 331–337.CrossRef
Zurück zum Zitat Lee, K. S., Kim, S. B., Lee, K. H., Sung, H. J., & Kim, S. S. (2010). Three-dimensional microfluidic liquid-core/liquid-cladding waveguide. Applied Physics Letters, 97, 021109.CrossRef Lee, K. S., Kim, S. B., Lee, K. H., Sung, H. J., & Kim, S. S. (2010). Three-dimensional microfluidic liquid-core/liquid-cladding waveguide. Applied Physics Letters, 97, 021109.CrossRef
Zurück zum Zitat Lee, W., Li, H., Suter, J. D., Reddy, K., Sun, Y., & Fan, X. (2011). Tunable single mode lasing from an on-chip optofluidic ring resonator laser. Applied Physics Letters, 98, 061103.CrossRef Lee, W., Li, H., Suter, J. D., Reddy, K., Sun, Y., & Fan, X. (2011). Tunable single mode lasing from an on-chip optofluidic ring resonator laser. Applied Physics Letters, 98, 061103.CrossRef
Zurück zum Zitat Li, D. (Ed.). (2015a). Encyclopedia of microfluidics and nanofluidics (pp. 2109–2114). Springer. Li, D. (Ed.). (2015a). Encyclopedia of microfluidics and nanofluidics (pp. 2109–2114). Springer.
Zurück zum Zitat Li, D. (Ed.). (2015b). Encyclopedia of microfluidics and nanofluidics (pp. 2089–2090). Springer. Li, D. (Ed.). (2015b). Encyclopedia of microfluidics and nanofluidics (pp. 2089–2090). Springer.
Zurück zum Zitat Li, Z., & Psaltis, D. (2008). Optofluidic dye lasers. Microfluidics and Nanofluidics, 4, 145–158.CrossRef Li, Z., & Psaltis, D. (2008). Optofluidic dye lasers. Microfluidics and Nanofluidics, 4, 145–158.CrossRef
Zurück zum Zitat Li, X., Chen, Z., Taflove, A., & Backman, V. (2005). Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Optics Express, 13, 526–533.CrossRef Li, X., Chen, Z., Taflove, A., & Backman, V. (2005). Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Optics Express, 13, 526–533.CrossRef
Zurück zum Zitat Li, L., Guo, W., Yan, Y., Lee, S., & Wang, T. (2013). Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light: Science and Applications, 2, e104.CrossRef Li, L., Guo, W., Yan, Y., Lee, S., & Wang, T. (2013). Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light: Science and Applications, 2, e104.CrossRef
Zurück zum Zitat Li, Y., Liu, X., Yang, X., Lei, H., Zhang, Y., & Li, B. (2017). Enhancing upconversion fluorescence with a natural bio-microlens. ACS Nano, 11, 10672–10680.CrossRef Li, Y., Liu, X., Yang, X., Lei, H., Zhang, Y., & Li, B. (2017). Enhancing upconversion fluorescence with a natural bio-microlens. ACS Nano, 11, 10672–10680.CrossRef
Zurück zum Zitat Liang, X. J., Liu, A. Q., Lim, C. S., Ayi, T. C., & Yap, P. H. (2007). Determining refractive index of single living cell using an integrated microchip. Sensors and Actuators A, 133, 349–354.CrossRef Liang, X. J., Liu, A. Q., Lim, C. S., Ayi, T. C., & Yap, P. H. (2007). Determining refractive index of single living cell using an integrated microchip. Sensors and Actuators A, 133, 349–354.CrossRef
Zurück zum Zitat Liu, H., Shi, Y., Liang, L., Li, L., Guo, S., Yin, L., & Yang, Y. (2017a). A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments. Lab on a Chip, 17, 1280–1286.CrossRef Liu, H., Shi, Y., Liang, L., Li, L., Guo, S., Yin, L., & Yang, Y. (2017a). A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments. Lab on a Chip, 17, 1280–1286.CrossRef
Zurück zum Zitat Liu, L., Zhou, X., Lu, M., Zhang, M., Yang, C., Ma, R., Memon, A. G., Shi, H., & Qian, Y. (2017b). An array fluorescent biosensor based on planar waveguide for multi-analyte determination in water samples. Sensors and Actuators B: Chemical, 240, 107–113.CrossRef Liu, L., Zhou, X., Lu, M., Zhang, M., Yang, C., Ma, R., Memon, A. G., Shi, H., & Qian, Y. (2017b). An array fluorescent biosensor based on planar waveguide for multi-analyte determination in water samples. Sensors and Actuators B: Chemical, 240, 107–113.CrossRef
Zurück zum Zitat Manz, A., Graber, N., & Widmer, H. M. (1990). Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1, 244–248.CrossRef Manz, A., Graber, N., & Widmer, H. M. (1990). Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1, 244–248.CrossRef
Zurück zum Zitat Mao, X., Waldeisen, J. R., Juluri, B. K., & Huang, T. J. (2007). Hydrodynamically tunable optofluidic cylindrical microlens. Lab on a Chip, 7, 1303–1308.CrossRef Mao, X., Waldeisen, J. R., Juluri, B. K., & Huang, T. J. (2007). Hydrodynamically tunable optofluidic cylindrical microlens. Lab on a Chip, 7, 1303–1308.CrossRef
Zurück zum Zitat Mao, X., Lin, S.-C. S., Lapsley, M. I., Shi, J., Juluri, B. K., & Huang, T. J. (2009). Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom. Lab on a Chip, 9, 2050–2058.CrossRef Mao, X., Lin, S.-C. S., Lapsley, M. I., Shi, J., Juluri, B. K., & Huang, T. J. (2009). Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom. Lab on a Chip, 9, 2050–2058.CrossRef
Zurück zum Zitat Mark, D., Haeberle, S., Roth, G., Stetten, F. V., & Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews, 39, 1153–1182.CrossRef Mark, D., Haeberle, S., Roth, G., Stetten, F. V., & Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews, 39, 1153–1182.CrossRef
Zurück zum Zitat McLeod, E., & Arnold, C. B. (2008). Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotechnology, 3, 413–417.CrossRef McLeod, E., & Arnold, C. B. (2008). Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotechnology, 3, 413–417.CrossRef
Zurück zum Zitat Miccio, L., Memmolo, P., Merola, F., Netti, P. A., & Ferraro, P. (2015). Red blood cell as an adaptive optofluidic microlens. Nature Communications, 6, 6502.CrossRef Miccio, L., Memmolo, P., Merola, F., Netti, P. A., & Ferraro, P. (2015). Red blood cell as an adaptive optofluidic microlens. Nature Communications, 6, 6502.CrossRef
Zurück zum Zitat Minzioni, P., Osellame, R., Sada, C., Zhao, S., Omenetto, F., Gylfason, K. B., Haraldsson, T., Zhang, Y., Ozcan, A., Wax, A., Mugele, F., Schmidt, H., Testa, G., Bernini, R., Guck, J., Liberale, C., Berg-Sørensen, K., Chen, J., Pollnau, M., Xiong, S., Liu, A.-Q., Shiue, C.-C., Fan, S.-K., Erickson, D., & Sinton, D. (2017). Roadmap for optofluidics. Journal of Optics, 19, 093003.CrossRef Minzioni, P., Osellame, R., Sada, C., Zhao, S., Omenetto, F., Gylfason, K. B., Haraldsson, T., Zhang, Y., Ozcan, A., Wax, A., Mugele, F., Schmidt, H., Testa, G., Bernini, R., Guck, J., Liberale, C., Berg-Sørensen, K., Chen, J., Pollnau, M., Xiong, S., Liu, A.-Q., Shiue, C.-C., Fan, S.-K., Erickson, D., & Sinton, D. (2017). Roadmap for optofluidics. Journal of Optics, 19, 093003.CrossRef
Zurück zum Zitat Mishra, K., Murade, C., Carreel, B., Roghair, I., Oh, J. M., Manukyan, G., van den Ende, D., & Mugele, F. (2014). Optofluidic lens with tunable focal length and asphericity. Scientific Reports, 4, 6378.CrossRef Mishra, K., Murade, C., Carreel, B., Roghair, I., Oh, J. M., Manukyan, G., van den Ende, D., & Mugele, F. (2014). Optofluidic lens with tunable focal length and asphericity. Scientific Reports, 4, 6378.CrossRef
Zurück zum Zitat Mohammed, M.-I., & Desmulliez, M. P. Y. (2013). Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I. Biomicrofluidics, 7, 064112.CrossRef Mohammed, M.-I., & Desmulliez, M. P. Y. (2013). Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I. Biomicrofluidics, 7, 064112.CrossRef
Zurück zum Zitat Monat, C., Domachuk, P., & Eggleton, B. J. (2007). Integrated optofluidics: A new river of light. Nature Photonics, 1, 106–114.CrossRef Monat, C., Domachuk, P., & Eggleton, B. J. (2007). Integrated optofluidics: A new river of light. Nature Photonics, 1, 106–114.CrossRef
Zurück zum Zitat Monks, J. N., Yan, B., Hawkins, N., Vollrath, F., & Wang, Z. (2016). Spider silk: Mother nature’s bio-superlens. Nano Letters, 16, 5842–5845.CrossRef Monks, J. N., Yan, B., Hawkins, N., Vollrath, F., & Wang, Z. (2016). Spider silk: Mother nature’s bio-superlens. Nano Letters, 16, 5842–5845.CrossRef
Zurück zum Zitat Muñoz-Berbel, X., Rodríguez-Rodríguez, R., Vigués, N., Demming, S., Mas, J., Büttgenbach, S., Verpoorte, E., Ortiz, P., & Llobera, A. (2013). Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring. Lab on a Chip, 13, 4239–4247.CrossRef Muñoz-Berbel, X., Rodríguez-Rodríguez, R., Vigués, N., Demming, S., Mas, J., Büttgenbach, S., Verpoorte, E., Ortiz, P., & Llobera, A. (2013). Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring. Lab on a Chip, 13, 4239–4247.CrossRef
Zurück zum Zitat Nguyen, N.-T. (2010). Micro-optofluidic lenses: A review. Biomicrofluidics, 4, 031501.CrossRef Nguyen, N.-T. (2010). Micro-optofluidic lenses: A review. Biomicrofluidics, 4, 031501.CrossRef
Zurück zum Zitat Ozcan, A., & McLeod, E. (2016). Lensless imaging and sensing. Annual Review of Biomedical Engineering, 18, 77–102.CrossRef Ozcan, A., & McLeod, E. (2016). Lensless imaging and sensing. Annual Review of Biomedical Engineering, 18, 77–102.CrossRef
Zurück zum Zitat Pang, L., Chen, H. M., Freeman, L. M., & Fainman, Y. (2012). Optofluidic devices and applications in photonics, sensing and imaging. Lab on a Chip, 12, 3543–3551.CrossRef Pang, L., Chen, H. M., Freeman, L. M., & Fainman, Y. (2012). Optofluidic devices and applications in photonics, sensing and imaging. Lab on a Chip, 12, 3543–3551.CrossRef
Zurück zum Zitat Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85, 3966–3969.CrossRef Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85, 3966–3969.CrossRef
Zurück zum Zitat Piyasena, M. E., & Graves, S. W. (2014). The intersection of flow cytometry with microfluidics and microfabrication. Lab on a Chip, 14, 1044–1059.CrossRef Piyasena, M. E., & Graves, S. W. (2014). The intersection of flow cytometry with microfluidics and microfabrication. Lab on a Chip, 14, 1044–1059.CrossRef
Zurück zum Zitat Ro, K. W., Lim, K., Shim, B. C., & Hahn, J. H. (2005). Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Analytical Chemistry, 77, 5160–5166.CrossRef Ro, K. W., Lim, K., Shim, B. C., & Hahn, J. H. (2005). Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Analytical Chemistry, 77, 5160–5166.CrossRef
Zurück zum Zitat Rodríguez-Ruiz, I., Ackermann, T. N., Muñoz-Berbel, X., & Llobera, A. (2016). Photonic lab-on-a-chip: Integration of optical spectroscopy in microfluidic systems. Analytical Chemistry, 88, 6630–6637.CrossRef Rodríguez-Ruiz, I., Ackermann, T. N., Muñoz-Berbel, X., & Llobera, A. (2016). Photonic lab-on-a-chip: Integration of optical spectroscopy in microfluidic systems. Analytical Chemistry, 88, 6630–6637.CrossRef
Zurück zum Zitat Rosenauer, M., & Vellekoop, M. J. (2009a). A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping. Applied Physics Letters, 95, 163702.CrossRef Rosenauer, M., & Vellekoop, M. J. (2009a). A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping. Applied Physics Letters, 95, 163702.CrossRef
Zurück zum Zitat Rosenauer, M., & Vellekoop, M. J. (2009b). 3D fluidic lens shaping—A multiconvex hydrodynamically adjustable optofluidic microlens. Lab on a Chip, 9, 1040–1042.CrossRef Rosenauer, M., & Vellekoop, M. J. (2009b). 3D fluidic lens shaping—A multiconvex hydrodynamically adjustable optofluidic microlens. Lab on a Chip, 9, 1040–1042.CrossRef
Zurück zum Zitat Schmidt, H., & Hawkins, A. R. (2008). Optofluidic waveguides: I. concepts and implementations. Microfluidics and Nanofluidics, 4, 3–16.CrossRef Schmidt, H., & Hawkins, A. R. (2008). Optofluidic waveguides: I. concepts and implementations. Microfluidics and Nanofluidics, 4, 3–16.CrossRef
Zurück zum Zitat Schmidt, H., & Hawkins, A. R. (2011). The photonic integration of non-solid media using optofluidics. Nature Photonics, 5, 598–604.CrossRef Schmidt, H., & Hawkins, A. R. (2011). The photonic integration of non-solid media using optofluidics. Nature Photonics, 5, 598–604.CrossRef
Zurück zum Zitat Schuergers, N., Lenn, T., Kampmann, R., Meissner, M. V., Esteves, T., Temerinac-Ott, M., Korvink, J. G., Lowe, A. R., Mullineaux, C. W., & Wilde, A. (2016). Cyanobacteria use micro-optics to sense light direction. eLife, 5, e12620.CrossRef Schuergers, N., Lenn, T., Kampmann, R., Meissner, M. V., Esteves, T., Temerinac-Ott, M., Korvink, J. G., Lowe, A. R., Mullineaux, C. W., & Wilde, A. (2016). Cyanobacteria use micro-optics to sense light direction. eLife, 5, e12620.CrossRef
Zurück zum Zitat Schwartz, J. J., Stavrakis, S., & Quake, S. R. (2010). Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability. Nature Nanotechnology, 5, 127–132.CrossRef Schwartz, J. J., Stavrakis, S., & Quake, S. R. (2010). Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability. Nature Nanotechnology, 5, 127–132.CrossRef
Zurück zum Zitat Seo, J., & Lee, L. P. (2004). Disposable integrated microfluidics with self-aligned planar microlenses. Sensors and Actuators B: Chemical, 99, 615–622.CrossRef Seo, J., & Lee, L. P. (2004). Disposable integrated microfluidics with self-aligned planar microlenses. Sensors and Actuators B: Chemical, 99, 615–622.CrossRef
Zurück zum Zitat Seo, S., Su, T.-W., Tseng, D. K., Erlinger, A., & Ozcan, A. (2009). Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab on a Chip, 9, 777–787.CrossRef Seo, S., Su, T.-W., Tseng, D. K., Erlinger, A., & Ozcan, A. (2009). Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab on a Chip, 9, 777–787.CrossRef
Zurück zum Zitat Shi, J., Stratton, Z., Lin, S.-C. S., Huang, H., & Huang, T. J. (2010). Tunable optofluidic microlens through active pressure control of an air–liquid interface. Microfluidics and Nanofluidics, 9, 313–318.CrossRef Shi, J., Stratton, Z., Lin, S.-C. S., Huang, H., & Huang, T. J. (2010). Tunable optofluidic microlens through active pressure control of an air–liquid interface. Microfluidics and Nanofluidics, 9, 313–318.CrossRef
Zurück zum Zitat Shopova, S. I., Zhou, H., Fan, X., & Zhang, P. (2007). Optofluidic ring resonator based dye laser. Applied Physics Letters, 90, 221101.CrossRef Shopova, S. I., Zhou, H., Fan, X., & Zhang, P. (2007). Optofluidic ring resonator based dye laser. Applied Physics Letters, 90, 221101.CrossRef
Zurück zum Zitat Song, C., & Tan, S. H. (2017). A perspective on the rise of optofluidics and the future. Micromachines, 8, 152.CrossRef Song, C., & Tan, S. H. (2017). A perspective on the rise of optofluidics and the future. Micromachines, 8, 152.CrossRef
Zurück zum Zitat Song, W., Vasdekis, A. E., Li, Z., & Psaltis, D. (2009). Optofluidic evanescent dye laser based on a distributed feedback circular grating. Applied Physics Letters, 94, 161110.CrossRef Song, W., Vasdekis, A. E., Li, Z., & Psaltis, D. (2009). Optofluidic evanescent dye laser based on a distributed feedback circular grating. Applied Physics Letters, 94, 161110.CrossRef
Zurück zum Zitat Song, C., Nguyen, N.-T., Tan, S.-H., & Asundi, A. K. (2010). A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length. Microfluidics and Nanofluidics, 9, 889–896.CrossRef Song, C., Nguyen, N.-T., Tan, S.-H., & Asundi, A. K. (2010). A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length. Microfluidics and Nanofluidics, 9, 889–896.CrossRef
Zurück zum Zitat Song, C., Nguyen, N.-T., Yap, Y. F., Luong, T.-D., & Asundi, A. K. (2011). Multi-functional, optofluidic, in-plane, bi-concave lens: Tuning light beam from focused to divergent. Microfluidics and Nanofluidics, 10, 671–678.CrossRef Song, C., Nguyen, N.-T., Yap, Y. F., Luong, T.-D., & Asundi, A. K. (2011). Multi-functional, optofluidic, in-plane, bi-concave lens: Tuning light beam from focused to divergent. Microfluidics and Nanofluidics, 10, 671–678.CrossRef
Zurück zum Zitat Tang, S. K., Li, Z., Abate, A. R., Agresti, J. J., Weitz, D. A., Psaltis, D., & Whitesides, G. M. (2009). A multi-color fast-switching microfluidic droplet dye laser. Lab on a Chip, 9, 2767–2771.CrossRef Tang, S. K., Li, Z., Abate, A. R., Agresti, J. J., Weitz, D. A., Psaltis, D., & Whitesides, G. M. (2009). A multi-color fast-switching microfluidic droplet dye laser. Lab on a Chip, 9, 2767–2771.CrossRef
Zurück zum Zitat Testa, G., Huang, Y., Zeni, L., Sarro, P. M., & Bernini, R. (2010). Liquid core ARROW waveguides by atomic layer deposition. IEEE Photonics Technology Letters, 22, 616–618.CrossRef Testa, G., Huang, Y., Zeni, L., Sarro, P. M., & Bernini, R. (2010). Liquid core ARROW waveguides by atomic layer deposition. IEEE Photonics Technology Letters, 22, 616–618.CrossRef
Zurück zum Zitat Threm, D., Nazirizadeh, Y., & Gerken, M. (2012). Photonic crystal biosensors towards on-chip integration. Journal of Biophotonics, 5, 601–616.CrossRef Threm, D., Nazirizadeh, Y., & Gerken, M. (2012). Photonic crystal biosensors towards on-chip integration. Journal of Biophotonics, 5, 601–616.CrossRef
Zurück zum Zitat Tung, Y.-C., Huang, N.-T., Oh, B.-R., Patra, B., Pan, C.-C., Qiu, T., Chu, P. K., Zhang, W., & Kurabayashi, K. (2012). Optofluidic detection for cellular phenotyping. Lab on a Chip, 12, 3552–3565.CrossRef Tung, Y.-C., Huang, N.-T., Oh, B.-R., Patra, B., Pan, C.-C., Qiu, T., Chu, P. K., Zhang, W., & Kurabayashi, K. (2012). Optofluidic detection for cellular phenotyping. Lab on a Chip, 12, 3552–3565.CrossRef
Zurück zum Zitat Vezenov, D. V., Mayers, B. T., Conroy, R. S., Whitesides, G. M., Snee, P. T., Chan, Y., Nocera, D. G., & Bawendi, M. G. (2005). A low-threshold, high-efficiency microfluidic waveguide laser. Journal of the American Chemical Society, 127, 8952–8953.CrossRef Vezenov, D. V., Mayers, B. T., Conroy, R. S., Whitesides, G. M., Snee, P. T., Chan, Y., Nocera, D. G., & Bawendi, M. G. (2005). A low-threshold, high-efficiency microfluidic waveguide laser. Journal of the American Chemical Society, 127, 8952–8953.CrossRef
Zurück zum Zitat Vila-Planas, J., Fernandez-Rosas, E., Ibarlucea, B., Demming, S., Nogúes, C., Plaza, J. A., Domínguez, C., Büttgenbach, S., & Llobera, A. (2011). Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nature Protocols, 6, 1642–1655.CrossRef Vila-Planas, J., Fernandez-Rosas, E., Ibarlucea, B., Demming, S., Nogúes, C., Plaza, J. A., Domínguez, C., Büttgenbach, S., & Llobera, A. (2011). Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nature Protocols, 6, 1642–1655.CrossRef
Zurück zum Zitat Wang, Z., Guo, W., Li, L., Luk’yanchuk, B., Khan, A., Liu, Z., Chen, Z., & Hong, M. (2011). Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications, 2, 218.CrossRef Wang, Z., Guo, W., Li, L., Luk’yanchuk, B., Khan, A., Liu, Z., Chen, Z., & Hong, M. (2011). Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications, 2, 218.CrossRef
Zurück zum Zitat Watts, B. R., Kowpak, T., Zhang, Z., Xu, C.-Q., & Zhu, S. (2010). Formation and characterization of an ideal excitation beam geometry in an optofluidic device. Biomedical Optics Express, 1, 848–860.CrossRef Watts, B. R., Kowpak, T., Zhang, Z., Xu, C.-Q., & Zhu, S. (2010). Formation and characterization of an ideal excitation beam geometry in an optofluidic device. Biomedical Optics Express, 1, 848–860.CrossRef
Zurück zum Zitat Watts, B. R., Zhang, Z., Xu, C.-Q., Cao, X., & Lin, M. (2013). A method for detecting forward scattering signals on-chip with a photonic-microfluidic integrated device. Biomedical Optics Express, 4, 1051–1060.CrossRef Watts, B. R., Zhang, Z., Xu, C.-Q., Cao, X., & Lin, M. (2013). A method for detecting forward scattering signals on-chip with a photonic-microfluidic integrated device. Biomedical Optics Express, 4, 1051–1060.CrossRef
Zurück zum Zitat Wei, Q., McLeod, E., Qi, H., Wan, Z., Sun, R., & Ozcan, A. (2013). On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography. Scientific Reports, 3, 1699.CrossRef Wei, Q., McLeod, E., Qi, H., Wan, Z., Sun, R., & Ozcan, A. (2013). On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography. Scientific Reports, 3, 1699.CrossRef
Zurück zum Zitat Wojciechowski, J. R., Shriver-Lake, L. C., Yamaguchi, M. Y., Füreder, E., Pieler, R., Schamesberger, M., Winder, C., Prall, H. J., Sonnleitner, M., & Ligler, F. S. (2009). Organic photodiodes for biosensor miniaturization. Analytical Chemistry, 81, 3455–3461.CrossRef Wojciechowski, J. R., Shriver-Lake, L. C., Yamaguchi, M. Y., Füreder, E., Pieler, R., Schamesberger, M., Winder, C., Prall, H. J., Sonnleitner, M., & Ligler, F. S. (2009). Organic photodiodes for biosensor miniaturization. Analytical Chemistry, 81, 3455–3461.CrossRef
Zurück zum Zitat Wolfe, D. B., Conroy, R. S., Garstecki, P., Mayers, B. T., Fischbach, M. A., Paul, K. E., Prentiss, M., & Whitesides, G. M. (2004). Dynamic control of liquid-core/liquid-cladding optical waveguides. Proceedings of the National Academy of Sciences of the United States of America, 101, 12434–12438.CrossRef Wolfe, D. B., Conroy, R. S., Garstecki, P., Mayers, B. T., Fischbach, M. A., Paul, K. E., Prentiss, M., & Whitesides, G. M. (2004). Dynamic control of liquid-core/liquid-cladding optical waveguides. Proceedings of the National Academy of Sciences of the United States of America, 101, 12434–12438.CrossRef
Zurück zum Zitat Wolfe, D. B., Vezenov, D. V., Mayers, B. T., Whitesides, G. M., Conroy, R. S., & Prentiss, M. G. (2005). Diffusion-controlled optical elements for optofluidics. Applied Physics Letters, 87, 181105.CrossRef Wolfe, D. B., Vezenov, D. V., Mayers, B. T., Whitesides, G. M., Conroy, R. S., & Prentiss, M. G. (2005). Diffusion-controlled optical elements for optofluidics. Applied Physics Letters, 87, 181105.CrossRef
Zurück zum Zitat Wu, J., & Gu, M. (2011). Microfluidic sensing: State of the art fabrication and detection techniques. Journal of Biomedical Optics, 16, 080901.CrossRef Wu, J., & Gu, M. (2011). Microfluidic sensing: State of the art fabrication and detection techniques. Journal of Biomedical Optics, 16, 080901.CrossRef
Zurück zum Zitat Wynne, T. M., Dixon, A. H., & Pennathur, S. (2012). Electrokinetic characterization of individual nanoparticles in nanofluidic channels. Microfluidics and Nanofluidics, 12, 411–421.CrossRef Wynne, T. M., Dixon, A. H., & Pennathur, S. (2012). Electrokinetic characterization of individual nanoparticles in nanofluidic channels. Microfluidics and Nanofluidics, 12, 411–421.CrossRef
Zurück zum Zitat Xiong, S., Liu, A., Chin, L., & Yang, Y. (2011). An optofluidic prism tuned by two laminar flows. Lab on a Chip, 11, 1864–1869.CrossRef Xiong, S., Liu, A., Chin, L., & Yang, Y. (2011). An optofluidic prism tuned by two laminar flows. Lab on a Chip, 11, 1864–1869.CrossRef
Zurück zum Zitat Xu, D., & Adachi, C. (2009). Organic light-emitting diode with liquid emitting layer. Applied Physics Letters, 95, 053304.CrossRef Xu, D., & Adachi, C. (2009). Organic light-emitting diode with liquid emitting layer. Applied Physics Letters, 95, 053304.CrossRef
Zurück zum Zitat Yan, Y., Li, L., Feng, C., Guo, W., Lee, S., & Hong, M. (2015). Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano, 8, 1809–1816.CrossRef Yan, Y., Li, L., Feng, C., Guo, W., Lee, S., & Hong, M. (2015). Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano, 8, 1809–1816.CrossRef
Zurück zum Zitat Yang, H., & Gijs, M. A. M. (2013). Microtextured substrates and microparticles used as in situ lenses for on-chip immunofluorescence amplification. Analytical Chemistry, 85, 2064–2071.CrossRef Yang, H., & Gijs, M. A. M. (2013). Microtextured substrates and microparticles used as in situ lenses for on-chip immunofluorescence amplification. Analytical Chemistry, 85, 2064–2071.CrossRef
Zurück zum Zitat Yang, H., & Gijs, M. A. M. (2015). Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures. Microelectronic Engineering, 143, 86–90.CrossRef Yang, H., & Gijs, M. A. M. (2015). Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures. Microelectronic Engineering, 143, 86–90.CrossRef
Zurück zum Zitat Yang, H., & Gijs, M. A. M. (2018). Micro-optics for microfluidic analytical applications. Chemical Society Reviews, 47, 1391–1458.CrossRef Yang, H., & Gijs, M. A. M. (2018). Micro-optics for microfluidic analytical applications. Chemical Society Reviews, 47, 1391–1458.CrossRef
Zurück zum Zitat Yang, H., Chao, C.-K., Lin, C.-P., & Shen, S.-C. (2004). Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers. Journal of Micromechanics and Microengineering, 14, 277–282.CrossRef Yang, H., Chao, C.-K., Lin, C.-P., & Shen, S.-C. (2004). Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers. Journal of Micromechanics and Microengineering, 14, 277–282.CrossRef
Zurück zum Zitat Yang, H., Moullan, N., Auwerx, J., & Gijs, M. A. M. (2014). Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10, 1712–1718.CrossRef Yang, H., Moullan, N., Auwerx, J., & Gijs, M. A. M. (2014). Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10, 1712–1718.CrossRef
Zurück zum Zitat Yang, H., Cornaglia, M., & Gijs, M. A. M. (2015). Photonic nanojet array for fast detection of single nanoparticles in a flow. Nano Letters, 15, 1730–1735.CrossRef Yang, H., Cornaglia, M., & Gijs, M. A. M. (2015). Photonic nanojet array for fast detection of single nanoparticles in a flow. Nano Letters, 15, 1730–1735.CrossRef
Zurück zum Zitat Yang, H., Trouillon, R., Huszka, G., & Gijs, M. A. M. (2016a). Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Letters, 16, 4862–4870.CrossRef Yang, H., Trouillon, R., Huszka, G., & Gijs, M. A. M. (2016a). Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Letters, 16, 4862–4870.CrossRef
Zurück zum Zitat Yang, T., Bragheri, F., & Minzioni, P. (2016b). A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level. Micromachines, 7, 90.CrossRef Yang, T., Bragheri, F., & Minzioni, P. (2016b). A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level. Micromachines, 7, 90.CrossRef
Zurück zum Zitat Yang, H., Zhang, Y., Chen, S., & Hao, R. (2019). Micro-optical components for bioimaging on tissues, cells and subcellular structures. Micromachines, 10, 405.CrossRef Yang, H., Zhang, Y., Chen, S., & Hao, R. (2019). Micro-optical components for bioimaging on tissues, cells and subcellular structures. Micromachines, 10, 405.CrossRef
Zurück zum Zitat Yao, B., Luo, G., Wang, L., Gao, Y., Lei, G., Ren, K., Chen, L., Wang, Y., Hu, Y., & Qiu, Y. (2005). A microfluidic device using a green organic light emitting diode as an integrated excitation source. Lab on a Chip, 5, 1041–1047.CrossRef Yao, B., Luo, G., Wang, L., Gao, Y., Lei, G., Ren, K., Chen, L., Wang, Y., Hu, Y., & Qiu, Y. (2005). A microfluidic device using a green organic light emitting diode as an integrated excitation source. Lab on a Chip, 5, 1041–1047.CrossRef
Zurück zum Zitat Yu, H., Zhou, G., Leung, H. M., & Chau, F. S. (2010). Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation. Optics Express, 18, 9945–9954.CrossRef Yu, H., Zhou, G., Leung, H. M., & Chau, F. S. (2010). Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation. Optics Express, 18, 9945–9954.CrossRef
Zurück zum Zitat Zhang, H., Ho, S., Eaton, S. M., Li, J., & Herman, P. R. (2008). Three-dimensional optical sensing network written in fused silica glass with femtosecond laser. Optics Express, 16, 14015–14023.CrossRef Zhang, H., Ho, S., Eaton, S. M., Li, J., & Herman, P. R. (2008). Three-dimensional optical sensing network written in fused silica glass with femtosecond laser. Optics Express, 16, 14015–14023.CrossRef
Zurück zum Zitat Zhao, Y., Zhao, X., & Gu, Z. (2010). Photonic crystals in bioassays. Advanced Functional Materials, 20, 2970–2988.CrossRef Zhao, Y., Zhao, X., & Gu, Z. (2010). Photonic crystals in bioassays. Advanced Functional Materials, 20, 2970–2988.CrossRef
Zurück zum Zitat Zhao, Y., Stratton, Z. S., Guo, F., Lapsley, M. I., Chan, C. Y., Lin, S.-C. S., & Huang, T. J. (2013). Optofluidic imaging: Now and beyond. Lab on a Chip, 13, 17–24.CrossRef Zhao, Y., Stratton, Z. S., Guo, F., Lapsley, M. I., Chan, C. Y., Lin, S.-C. S., & Huang, T. J. (2013). Optofluidic imaging: Now and beyond. Lab on a Chip, 13, 17–24.CrossRef
Zurück zum Zitat Zheng, H. Y., Liu, H., Wan, S., Lim, G. C., Nikumb, S., & Chen, Q. (2006). Ultrashort pulse laser micromachined microchannels and their application in an optical switch. International Journal of Advanced Design and Manufacturing Technology, 27, 925–929.CrossRef Zheng, H. Y., Liu, H., Wan, S., Lim, G. C., Nikumb, S., & Chen, Q. (2006). Ultrashort pulse laser micromachined microchannels and their application in an optical switch. International Journal of Advanced Design and Manufacturing Technology, 27, 925–929.CrossRef
Zurück zum Zitat Zhu, H., Mavandadi, S., Coskun, A. F., Yaglidere, O., & Ozcan, A. (2011). Optofluidic fluorescent imaging cytometry on a cell phone. Analytical Chemistry, 83, 6641–6647.CrossRef Zhu, H., Mavandadi, S., Coskun, A. F., Yaglidere, O., & Ozcan, A. (2011). Optofluidic fluorescent imaging cytometry on a cell phone. Analytical Chemistry, 83, 6641–6647.CrossRef
Metadaten
Titel
Optofluidic Devices for Bioanalytical Applications
verfasst von
Hui Yang
Martin A. M. Gijs
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-79749-2_10

Neuer Inhalt