2008 | OriginalPaper | Buchkapitel
Orbit Sums and Modular Vector Invariants
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Let
m, n
positive integers,
R
a commutative ring with the unit element 1, and
$$ A_{mn} = R\left[ {x_{11} , \ldots ,x_{m1} ; \ldots ;x_{1n} , \ldots ,x_{mn} } \right] $$
the algebra of polynomials in
mn
variables x
ij
over
R.
The symmetric group
S
n
operates on the algebra
A
mn
as a group of
R
-automorphisms by the rule: σ(x
ij
)
=
x
i
,σ(
j
),
σ
∈
G.
Denote by
$$ A_{mn}^{S_n } $$
the subalgebra of invariants of the algebra
A
mn
with respect to
S
n
and define polarized elementary symmetric polynomials
$$ u_{r_1 , \ldots ,r_m } \in A_{mn}^{S_n } $$
in
n
vector variables (x
11
,..., x
m1
),..., (x
1n
,..., x
mn
) by means of the following formal identity
$$ \prod\limits_{j = 1}^n {\left( {1 + x_1 jz_1 + \cdots + x_{mj} z_m } \right) = 1 + \sum\limits_{1 \leqslant r_1 + \cdots + r_m \leqslant n} {u_{r1, \ldots rm} z_1^{r_1 } \cdots z_m^{r_m } .} } $$