Skip to main content
Erschienen in: Mechanics of Composite Materials 5/2018

13.11.2018

Orientation of Anisotropic Carbon Particles in the Matrix of Reinforced Plastics by an AC Electric Field

verfasst von: D. A. Bulgakov, A. Ya. Gorenberg, A. M. Kuperman

Erschienen in: Mechanics of Composite Materials | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to increase the shear strength of glass-fibers-reinforced plastics, a method has been developed for orientation of conductive carbon nanoparticles by an electric field applied transversely to the reinforcing fibers. Results of our research confirm the efficiency of the method offered — the shear strength the composites increased significantly, up to 35%, without reducing their other characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. L. Kerber, V. M. Vinogradov, G. S. Golovkin, et al., Polymer Composite Materials: Structure, Properties, Technology [in Russian], SPb, Professia (2008). M. L. Kerber, V. M. Vinogradov, G. S. Golovkin, et al., Polymer Composite Materials: Structure, Properties, Technology [in Russian], SPb, Professia (2008).
2.
Zurück zum Zitat N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, et al. [in Russian], Physics of Composite Materials, M., Mir (2005). N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, et al. [in Russian], Physics of Composite Materials, M., Mir (2005).
3.
Zurück zum Zitat V. I. Solodilov, R. A. Korohin, Yu. A. Gorbatkina, and A. M. Kuperman, “Comparison of fracture energies of epoxypolysulfone matrices and unidirectional composites on them,” Mech. Compos. Mater., 51, No. 2, 177-190 (2015).CrossRef V. I. Solodilov, R. A. Korohin, Yu. A. Gorbatkina, and A. M. Kuperman, “Comparison of fracture energies of epoxypolysulfone matrices and unidirectional composites on them,” Mech. Compos. Mater., 51, No. 2, 177-190 (2015).CrossRef
4.
Zurück zum Zitat V. I. Solodilov, Yu. A. Gorbatkina, A. M. Kuperman, “The effect of an active diluent on the properties of epoxy resin and unidirectional carbon-fiber-reinforced plastics,” Mech. Compos. Mater., 39, No. 6, 493-502 (2003).CrossRef V. I. Solodilov, Yu. A. Gorbatkina, A. M. Kuperman, “The effect of an active diluent on the properties of epoxy resin and unidirectional carbon-fiber-reinforced plastics,” Mech. Compos. Mater., 39, No. 6, 493-502 (2003).CrossRef
5.
Zurück zum Zitat V. I. Solodilov, I. V. Bessonov, A. V. Kireinov, N. Yu. Taraskin, and A. M. Kuperman, “Properties of glass-fibers plastic on the basis of an epoxy binder modified by a furfurolacetone resind and polysulfone,” Kompozity i Nanostruktury, 8, No. 2, 77-87 (2016). V. I. Solodilov, I. V. Bessonov, A. V. Kireinov, N. Yu. Taraskin, and A. M. Kuperman, “Properties of glass-fibers plastic on the basis of an epoxy binder modified by a furfurolacetone resind and polysulfone,” Kompozity i Nanostruktury, 8, No. 2, 77-87 (2016).
6.
Zurück zum Zitat R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Shapagin, “Rheological and physicomechanical properties epoxy-polyetherimide compositions,” Mech. Compos. Mater., 51, No. 3, 313-320 (2015).CrossRef R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Shapagin, “Rheological and physicomechanical properties epoxy-polyetherimide compositions,” Mech. Compos. Mater., 51, No. 3, 313-320 (2015).CrossRef
7.
Zurück zum Zitat Yan Zhang, Fenghua Chen, Wei Liu, Songmei Zhao, Xianggui Liu, Xia Dong, and C. Han Charles, “Rheological behavior of the epoxy/thermoplastic blends during the reaction induced phase separation,” Polymer, 55, Iss. 19, 4983-4989 (2014).CrossRef Yan Zhang, Fenghua Chen, Wei Liu, Songmei Zhao, Xianggui Liu, Xia Dong, and C. Han Charles, “Rheological behavior of the epoxy/thermoplastic blends during the reaction induced phase separation,” Polymer, 55, Iss. 19, 4983-4989 (2014).CrossRef
8.
Zurück zum Zitat V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional GFRP based on an epoxy resin modified with polysulfone or an epoxyurethane oligomer,” Mech. Compos. Mater., 42, No. 6, 513-526 (2006).CrossRef V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional GFRP based on an epoxy resin modified with polysulfone or an epoxyurethane oligomer,” Mech. Compos. Mater., 42, No. 6, 513-526 (2006).CrossRef
9.
Zurück zum Zitat V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional GFRP on the basis of an epoxy resin modified by polysulfone or an epoxyurethane oligomer,” Mekh. Kompoz. Mater. Konstr., 14, No. 2, 224-235 (2008). V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional GFRP on the basis of an epoxy resin modified by polysulfone or an epoxyurethane oligomer,” Mekh. Kompoz. Mater. Konstr., 14, No. 2, 224-235 (2008).
10.
Zurück zum Zitat R. A. Korokhin, V. I. Solodilov, and Yu. A. Gorbatkina, “Properties of GFRP on the basis of an aerosol-filled resin,” Mekh. Kompoz. Mater. Konstr., 15, No. 3, 437-447 (2009). R. A. Korokhin, V. I. Solodilov, and Yu. A. Gorbatkina, “Properties of GFRP on the basis of an aerosol-filled resin,” Mekh. Kompoz. Mater. Konstr., 15, No. 3, 437-447 (2009).
11.
Zurück zum Zitat R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Otegov, “Physicomechanical properties of dispersedly epoxies,” Plast. Massy, No. 4, 37-41 (2013). R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Otegov, “Physicomechanical properties of dispersedly epoxies,” Plast. Massy, No. 4, 37-41 (2013).
12.
Zurück zum Zitat V. A. Bol’shakov, V. I. Solodilov, R. A. Korokhin, S. V. Kondrashov, Yu. I. Merkulov, and T. P. Dyachkova, “Investigation of crack resistance of polymer composite materials made by the infusion method with the use of various concentrates on the basis of modified CNTs,” Tr. VIAM, 55, No. 7, 9 (2017).CrossRef V. A. Bol’shakov, V. I. Solodilov, R. A. Korokhin, S. V. Kondrashov, Yu. I. Merkulov, and T. P. Dyachkova, “Investigation of crack resistance of polymer composite materials made by the infusion method with the use of various concentrates on the basis of modified CNTs,” Tr. VIAM, 55, No. 7, 9 (2017).CrossRef
13.
Zurück zum Zitat R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Otegov, “Effect of ultrasonic processing of nanomodified binders on the fracture toughness hardened compositions,” Mekh. Kompoz. Mater. Konstr., 17, No. 4, 527-538 (2011). R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Otegov, “Effect of ultrasonic processing of nanomodified binders on the fracture toughness hardened compositions,” Mekh. Kompoz. Mater. Konstr., 17, No. 4, 527-538 (2011).
14.
Zurück zum Zitat R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. M. Kuperman, “ The use of carbon nanotubes as modifiers of epoxypolysulfone matrices of wound organoplastics,” Mech. Compos. Mater., 49, No. 1, 77-86 (2013).CrossRef R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. M. Kuperman, “ The use of carbon nanotubes as modifiers of epoxypolysulfone matrices of wound organoplastics,” Mech. Compos. Mater., 49, No. 1, 77-86 (2013).CrossRef
15.
Zurück zum Zitat C. A. Martina, J. K. W. Sandler, A. H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, and M. S. P. Shaffer, “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites,” Polymer, 46, 877-886 (2005).CrossRef C. A. Martina, J. K. W. Sandler, A. H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, and M. S. P. Shaffer, “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites,” Polymer, 46, 877-886 (2005).CrossRef
16.
Zurück zum Zitat Cheol Park, John Wilkinson, Sumanth Banda, Zoubeida Ounaies, Kristopher E. Wise, Godfrey Sauti, Peter T. Lillehei, and Joycelyn S. Harrison, “Aligned single-wall carbon nanotube polymer composites using an electric field,” J. Polym. Sci., Part B, Polym. Phys., 44, 1751-1762 (2006).CrossRef Cheol Park, John Wilkinson, Sumanth Banda, Zoubeida Ounaies, Kristopher E. Wise, Godfrey Sauti, Peter T. Lillehei, and Joycelyn S. Harrison, “Aligned single-wall carbon nanotube polymer composites using an electric field,” J. Polym. Sci., Part B, Polym. Phys., 44, 1751-1762 (2006).CrossRef
17.
Zurück zum Zitat Kunitoshi Yamamoto, Seiji Akita, and Yoshikazu Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis,” J. Phys. D: Appl. Phys., 31, L34.-L36 (1998).CrossRef Kunitoshi Yamamoto, Seiji Akita, and Yoshikazu Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis,” J. Phys. D: Appl. Phys., 31, L34.-L36 (1998).CrossRef
18.
Zurück zum Zitat E. F. Sheka, I. Natkaniec, V. Mel’nikov, and K. Druzbicki, “Neutron scattering from graphene oxide paper and thermally exfoliated reduced graphene oxide,” Nanosystems: Physics, Chemistry, Mathematics, 6, No. 3, 378-393 (2015). E. F. Sheka, I. Natkaniec, V. Mel’nikov, and K. Druzbicki, “Neutron scattering from graphene oxide paper and thermally exfoliated reduced graphene oxide,” Nanosystems: Physics, Chemistry, Mathematics, 6, No. 3, 378-393 (2015).
19.
Zurück zum Zitat Z. Z. Latypov, “Anisotropic strengthening the properties of nanocomposites by the methods of electromagnetic orientation nanoparticles in the matrix,” Nauch. Priborostr., 21, No. 1, 50-52 (2011). Z. Z. Latypov, “Anisotropic strengthening the properties of nanocomposites by the methods of electromagnetic orientation nanoparticles in the matrix,” Nauch. Priborostr., 21, No. 1, 50-52 (2011).
20.
Zurück zum Zitat D. A. Bulgakov, A. Ya. Gorenberg, and A. M. Kuperman, Patent on invention № 2468918, A composite reinforced material and a way of its production. D. A. Bulgakov, A. Ya. Gorenberg, and A. M. Kuperman, Patent on invention № 2468918, A composite reinforced material and a way of its production.
21.
Zurück zum Zitat Composite Materials [in Russian], eds V. V. Vasilyev and Yu. M. Tarnopolskii, M., Mashinostroenie (1990). Composite Materials [in Russian], eds V. V. Vasilyev and Yu. M. Tarnopolskii, M., Mashinostroenie (1990).
22.
Zurück zum Zitat A. V. Antonov, E. S. Zelenskii,y A. M. Kuperman, O. V. Lebedeva, and A. V. Rybin, “Behavior of reinforced plastics based on a polysulfone matrix under impact loading,” Mech. Compos. Mater., 34, No. 1, 12-19 (1998).CrossRef A. V. Antonov, E. S. Zelenskii,y A. M. Kuperman, O. V. Lebedeva, and A. V. Rybin, “Behavior of reinforced plastics based on a polysulfone matrix under impact loading,” Mech. Compos. Mater., 34, No. 1, 12-19 (1998).CrossRef
23.
Zurück zum Zitat V. I. Solodilov, S. L. Bazhenov, Yu. A. Gorbatkina, and A. M. Kuperman, “Determination of the interlaminar fracture toughness of glass-fiber-reinforced plastics on ring segments,” Mech. Compos. Mater., 39, No. 5, 407-414 (2003).CrossRef V. I. Solodilov, S. L. Bazhenov, Yu. A. Gorbatkina, and A. M. Kuperman, “Determination of the interlaminar fracture toughness of glass-fiber-reinforced plastics on ring segments,” Mech. Compos. Mater., 39, No. 5, 407-414 (2003).CrossRef
24.
Zurück zum Zitat E. N. Kablov, S. V. Kondrashov, G. Yu. Jurkov, “Prospects of using carbon-containing nanoparticles in binders for polymer composite materials,” Ros. Nanotekhnol., 8, No. 3-4, 28-46 (2013). E. N. Kablov, S. V. Kondrashov, G. Yu. Jurkov, “Prospects of using carbon-containing nanoparticles in binders for polymer composite materials,” Ros. Nanotekhnol., 8, No. 3-4, 28-46 (2013).
Metadaten
Titel
Orientation of Anisotropic Carbon Particles in the Matrix of Reinforced Plastics by an AC Electric Field
verfasst von
D. A. Bulgakov
A. Ya. Gorenberg
A. M. Kuperman
Publikationsdatum
13.11.2018
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 5/2018
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9772-2

Weitere Artikel der Ausgabe 5/2018

Mechanics of Composite Materials 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.