Skip to main content
Erschienen in: Wood Science and Technology 1/2010

01.02.2010 | Original

Origin of the characteristic hygro-mechanical properties of the gelatinous layer in tension wood from Kunugi oak (Quercus acutissima)

verfasst von: Hiroyuki Yamamoto, Julien Ruelle, Yoshiharu Arakawa, Masato Yoshida, Bruno Clair, Joseph Gril

Erschienen in: Wood Science and Technology | Ausgabe 1/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanism responsible for unusual hygro-mechanical properties of tension wood containing the gelatinous layer (G-layer) was investigated. Tension and normal wood specimens were sampled from the leaning stems of a 75- and a 40-year-old Kunugi oak (Quercus acutissima) tree, and the moisture dependencies of the longitudinal Young’s modulus and longitudinal dimensions were measured. The results, which were analyzed in relation to the anatomical properties of the specimens, revealed that the ratio of increase in the longitudinal Young’s modulus with drying was higher in the G-layer than in the lignified layer (L-layer); the longitudinal drying shrinkage displayed a similar pattern. It was found that the lattice distance of the [200] plane in the cellulose crystallite increased with drying, moreover, the half-width of the [200] diffraction peak increased with drying, which was remarkable in the tension wood. Those results suggest that in the green state, the polysaccharide matrix in the G-layer behaves like a water-swollen gel; however, it is transformed into a condensed and hard-packed structure by strong surface tension during moisture desorption, which is a form of xero-gelation. However, in the L-layer, condensation and subsequent xero-gelation of the polysaccharide matrix was prevented by the hydrophobic lignin that mechanically reinforces the matrix.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338CrossRef Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338CrossRef
Zurück zum Zitat Abe K, Yamamoto H (2006) Behavior of the cellulose microfibril in shrinking woods. J Wood Sci 52:15–19CrossRef Abe K, Yamamoto H (2006) Behavior of the cellulose microfibril in shrinking woods. J Wood Sci 52:15–19CrossRef
Zurück zum Zitat Abe K, Yamamoto H (2007) The influence of boiling and drying treatments on the behaviors of tension wood with gelatinous layers in Zelkova serrata. J Wood Sci 53:5–10CrossRef Abe K, Yamamoto H (2007) The influence of boiling and drying treatments on the behaviors of tension wood with gelatinous layers in Zelkova serrata. J Wood Sci 53:5–10CrossRef
Zurück zum Zitat Akerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57:459–465CrossRef Akerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57:459–465CrossRef
Zurück zum Zitat Boyd JD (1977) Relationship between fiber morphology and shrinkage of wood. Wood Sic Technol 11:3–22CrossRef Boyd JD (1977) Relationship between fiber morphology and shrinkage of wood. Wood Sic Technol 11:3–22CrossRef
Zurück zum Zitat Clair B, Thibaut B (2001) Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J 22:121–131 Clair B, Thibaut B (2001) Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J 22:121–131
Zurück zum Zitat Clair B, Ruelle J, Thibaut B (2003) Relationship between growth stress, mechanical- physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill). Holzforschung 57:189–195CrossRef Clair B, Ruelle J, Thibaut B (2003) Relationship between growth stress, mechanical- physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill). Holzforschung 57:189–195CrossRef
Zurück zum Zitat Clair B, Thibaut B, Sugiyama J (2005a) On the detachment of the gelatinous layer in tension wood fiber. J Wood Sci 51:218–221CrossRef Clair B, Thibaut B, Sugiyama J (2005a) On the detachment of the gelatinous layer in tension wood fiber. J Wood Sci 51:218–221CrossRef
Zurück zum Zitat Clair B, Gril J, Baba K, Thibaut T, Sugiyama J (2005b) Precautions for the structural analysis of the gelatinous layer in tension wood. IAWA J 26:189–196 Clair B, Gril J, Baba K, Thibaut T, Sugiyama J (2005b) Precautions for the structural analysis of the gelatinous layer in tension wood. IAWA J 26:189–196
Zurück zum Zitat Clair B, Almeras T, Yamamoto H, Okuyama T, Sugiyama J (2006) Mechanical Behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91:1128–1135CrossRefPubMed Clair B, Almeras T, Yamamoto H, Okuyama T, Sugiyama J (2006) Mechanical Behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91:1128–1135CrossRefPubMed
Zurück zum Zitat Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules 9:494–498CrossRefPubMed Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules 9:494–498CrossRefPubMed
Zurück zum Zitat Cousins WJ (1976) Elastic modulus of lignin as related to moisture content. Wood Sci Technol 10:9–17CrossRef Cousins WJ (1976) Elastic modulus of lignin as related to moisture content. Wood Sci Technol 10:9–17CrossRef
Zurück zum Zitat Cousins WJ (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci Technol 12:161–167CrossRef Cousins WJ (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci Technol 12:161–167CrossRef
Zurück zum Zitat Fang CH, Clair B, Gril J, Almeras T (2007) Transverse shrinkage in G-fibers as the function of cell wall layering and growth strain. Wood Sci Technol 41:659–671CrossRef Fang CH, Clair B, Gril J, Almeras T (2007) Transverse shrinkage in G-fibers as the function of cell wall layering and growth strain. Wood Sci Technol 41:659–671CrossRef
Zurück zum Zitat Fang CH, Clair B, Gril J, Liu SQ (2008) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA J 29:237–246 Fang CH, Clair B, Gril J, Liu SQ (2008) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA J 29:237–246
Zurück zum Zitat Hengstenberg J, Mark H (1928) Röntgenuntersuchungen über den Bau der C-Ketten in Kohlenwasserstoffen. Z Krist 67:583 Hengstenberg J, Mark H (1928) Röntgenuntersuchungen über den Bau der C-Ketten in Kohlenwasserstoffen. Z Krist 67:583
Zurück zum Zitat Kojima Y, Yamamoto H (2004) Properties of the cell wall constituents in relation to the longitudinal elasticity of wood—Part 2. Origin of the moisture dependency of the longitudinal elasticity of wood. Wood Sci Technol 37:427–434CrossRef Kojima Y, Yamamoto H (2004) Properties of the cell wall constituents in relation to the longitudinal elasticity of wood—Part 2. Origin of the moisture dependency of the longitudinal elasticity of wood. Wood Sci Technol 37:427–434CrossRef
Zurück zum Zitat Kollmann F, Krech H (1960) Dynamic measurement of damping capacity and elastic properties of wood. Holz Roh Werkst 18:41–54CrossRef Kollmann F, Krech H (1960) Dynamic measurement of damping capacity and elastic properties of wood. Holz Roh Werkst 18:41–54CrossRef
Zurück zum Zitat Kubler H (1987) Growth stresses in trees and related wood properties. For Prod Abs 10:62–118 Kubler H (1987) Growth stresses in trees and related wood properties. For Prod Abs 10:62–118
Zurück zum Zitat Nishikubo N, Awano T, Banasiak A, Bouquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan end-transglycosylase (XET) functions in gelatinous layer of tension wood fiber in Poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855CrossRefPubMed Nishikubo N, Awano T, Banasiak A, Bouquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan end-transglycosylase (XET) functions in gelatinous layer of tension wood fiber in Poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855CrossRefPubMed
Zurück zum Zitat Nishimura H, Okano T, Asano I (1981) Fine structure of wood cell wall. 1. Structural features of noncrystalline substances in wood cell wall. Mokuzai Gakkaishi 27:611–617 Nishimura H, Okano T, Asano I (1981) Fine structure of wood cell wall. 1. Structural features of noncrystalline substances in wood cell wall. Mokuzai Gakkaishi 27:611–617
Zurück zum Zitat Norberg H, Meier H (1966) Physical and chemical properties of the gelatinous layer in tension wood fibres of aspen (Populus tremula L.). Holzforschung 6:174–178CrossRef Norberg H, Meier H (1966) Physical and chemical properties of the gelatinous layer in tension wood fibres of aspen (Populus tremula L.). Holzforschung 6:174–178CrossRef
Zurück zum Zitat Okuyama T, Yamamoto H, Iguchi M, Yoshida M (1990) Generation process of growth stresses in cell walls. II. Growth stress in tension wood. Mokuzai Gakkaishi 36:797–803 Okuyama T, Yamamoto H, Iguchi M, Yoshida M (1990) Generation process of growth stresses in cell walls. II. Growth stress in tension wood. Mokuzai Gakkaishi 36:797–803
Zurück zum Zitat Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR (1994) Growth stresses in tension wood. Role of microfibrils and lignification. Ann Sci For 51:291–300CrossRef Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR (1994) Growth stresses in tension wood. Role of microfibrils and lignification. Ann Sci For 51:291–300CrossRef
Zurück zum Zitat Okuyama T, Doldan J, Yamamoto H, Ona T (2004) Heart splitting at crosscutting of Eucalyptus grandis logs. J Wood Sci 50:1–6CrossRef Okuyama T, Doldan J, Yamamoto H, Ona T (2004) Heart splitting at crosscutting of Eucalyptus grandis logs. J Wood Sci 50:1–6CrossRef
Zurück zum Zitat Onaka F (1949) Study on reaction wood. Wood Res (Bull Wood Res Inst Kyoto Univ) 1:1–99 Onaka F (1949) Study on reaction wood. Wood Res (Bull Wood Res Inst Kyoto Univ) 1:1–99
Zurück zum Zitat Panshin AJ, de Zeeuw C (1971) Textbook of wood technology, 3rd edn. McGraw-Hill, New York Panshin AJ, de Zeeuw C (1971) Textbook of wood technology, 3rd edn. McGraw-Hill, New York
Zurück zum Zitat Salmén L, Olsson AM (1998) Interaction between hemicellulose, lignin and cellulose: structure-property relationships. J Pulp Paper Sci 24:99–103 Salmén L, Olsson AM (1998) Interaction between hemicellulose, lignin and cellulose: structure-property relationships. J Pulp Paper Sci 24:99–103
Zurück zum Zitat Wilson B, Archer RR (1979) Tree design—some biological solutions to mechanical problems. Bioscience 29:293–298CrossRef Wilson B, Archer RR (1979) Tree design—some biological solutions to mechanical problems. Bioscience 29:293–298CrossRef
Zurück zum Zitat Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol 32:171–182 Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol 32:171–182
Zurück zum Zitat Yamamoto H (2004) Role of the gelatinous layer on the origin of the physical properties of the tension wood. J Wood Sci 50:197–208CrossRef Yamamoto H (2004) Role of the gelatinous layer on the origin of the physical properties of the tension wood. J Wood Sci 50:197–208CrossRef
Zurück zum Zitat Yamamoto H, Okuyama T, Sugiyama K, Yoshida M (1992) Generation process of growth stresses in cell walls. IV. Action of the cellulose microfibrils upon the generation of the tensile stresses. Mokuzai Gakkaishi 38:107–113 Yamamoto H, Okuyama T, Sugiyama K, Yoshida M (1992) Generation process of growth stresses in cell walls. IV. Action of the cellulose microfibrils upon the generation of the tensile stresses. Mokuzai Gakkaishi 38:107–113
Zurück zum Zitat Yamamoto H, Okuyama T, Yoshida M (1993) Generation process of growth stresses in cell walls. V. Model of tensile stress generation in gelatinous fibers. Mokuzai Gakkaishi 39:118–125 Yamamoto H, Okuyama T, Yoshida M (1993) Generation process of growth stresses in cell walls. V. Model of tensile stress generation in gelatinous fibers. Mokuzai Gakkaishi 39:118–125
Zurück zum Zitat Yamamoto H, Yoshida M, Okuyama T (2002) Growth stress controls negative gravitropism in woody plant stems. Planta 216:280–292CrossRefPubMed Yamamoto H, Yoshida M, Okuyama T (2002) Growth stress controls negative gravitropism in woody plant stems. Planta 216:280–292CrossRefPubMed
Zurück zum Zitat Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J (2005) Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci 51:222–233CrossRef Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J (2005) Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci 51:222–233CrossRef
Zurück zum Zitat Yoshida M, Okuda T, Okuyama T (2000) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Ann For Sci 57:739–746CrossRef Yoshida M, Okuda T, Okuyama T (2000) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Ann For Sci 57:739–746CrossRef
Zurück zum Zitat Yoshida M, Ohta H, Okuyama T (2002) Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia). J Wood Sci 48:99–105CrossRef Yoshida M, Ohta H, Okuyama T (2002) Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia). J Wood Sci 48:99–105CrossRef
Metadaten
Titel
Origin of the characteristic hygro-mechanical properties of the gelatinous layer in tension wood from Kunugi oak (Quercus acutissima)
verfasst von
Hiroyuki Yamamoto
Julien Ruelle
Yoshiharu Arakawa
Masato Yoshida
Bruno Clair
Joseph Gril
Publikationsdatum
01.02.2010
Verlag
Springer-Verlag
Erschienen in
Wood Science and Technology / Ausgabe 1/2010
Print ISSN: 0043-7719
Elektronische ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-009-0262-5

Weitere Artikel der Ausgabe 1/2010

Wood Science and Technology 1/2010 Zur Ausgabe