Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 3/2019

19.11.2018

Overall thermal conductivity of unidirectional hybrid polymer nanocomposites containing SiO2 nanoparticles

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A physics-based nested hierarchical approach is established to investigate thermal conducting behavior of micro-filler (in the form of particle, short and long fiber)/nanoparticle-reinforced polymer hybrid nanocomposites. An effort is made to develop a unit cell-based micromechanical model predicting the thermal conductivities of general composite systems, including microscale filler-reinforced composites, nanoparticle-reinforced nanocomposites and microscale filler/nanoparticle-reinforced hybrid nanocomposites. The role of the nanoparticle/polymer interfacial thermal resistance is also considered in the analysis. The developed model presents a reasonable behavior compared with available experiments and other modeling methods for the thermal properties of composites and nanocomposites. The results are provided for two types of hybrid nanocomposites, including carbon micro-filler/silica (SiO2) nanoparticle-reinforced epoxy and glass micro-filler/SiO2 nanoparticle-reinforced epoxy systems. It is found that transverse thermal conducting behavior of general fibrous composites is significantly affected by adding the nanoparticles. However, due to the dominated role of the carbon fiber in the longitudinal direction, the longitudinal thermal conductivity of carbon fiber-reinforced composites is not influenced by the nanoparticles. Also, the thermal conductivities of both randomly oriented short fiber-reinforced composite and particulate composite systems can be improved with the addition of the nanoparticles. The obtained results could be useful to guide the design of hybrid nanocomposites with optimal thermal conductivities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)CrossRef Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)CrossRef
Zurück zum Zitat Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica 52(7), 1625–1640 (2017)CrossRef Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica 52(7), 1625–1640 (2017)CrossRef
Zurück zum Zitat Ansari, R., Hassanzadeh-Aghdam, M.K., Darvizeh, A.: On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites. Mech. Mater. 101, 14–26 (2016)CrossRef Ansari, R., Hassanzadeh-Aghdam, M.K., Darvizeh, A.: On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites. Mech. Mater. 101, 14–26 (2016)CrossRef
Zurück zum Zitat Beicha, D., Kanit, T., Brunet, Y., Imad, A., El Moumen, A., Khelfaoui, Y.: Effective transverse elastic properties of unidirectional fiber reinforced composites. Mech. Mater. 102, 47–53 (2016)CrossRef Beicha, D., Kanit, T., Brunet, Y., Imad, A., El Moumen, A., Khelfaoui, Y.: Effective transverse elastic properties of unidirectional fiber reinforced composites. Mech. Mater. 102, 47–53 (2016)CrossRef
Zurück zum Zitat Cairo, C.A.A., Florian, M., Graca, M.L.A., Bressiani, J.C.: Kinetic study by TGA of the effect of oxidation inhibitors for carbon–carbon composite. Mater. Sci. Eng. A 358(1), 298–303 (2003)CrossRef Cairo, C.A.A., Florian, M., Graca, M.L.A., Bressiani, J.C.: Kinetic study by TGA of the effect of oxidation inhibitors for carbon–carbon composite. Mater. Sci. Eng. A 358(1), 298–303 (2003)CrossRef
Zurück zum Zitat Chen, L., Sun, Y.Y., Xu, H.F., He, S.J., Wei, G.S., Du, X.Z., Lin, J.: Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride. Compos. Sci. Technol. 122, 42–49 (2016)CrossRef Chen, L., Sun, Y.Y., Xu, H.F., He, S.J., Wei, G.S., Du, X.Z., Lin, J.: Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride. Compos. Sci. Technol. 122, 42–49 (2016)CrossRef
Zurück zum Zitat Duong, H.M., Yamamoto, N., Bui, K., Papavassiliou, D.V., Maruyama, S., Wardle, B.L.: Morphology effects on nonisotropic thermal conduction of aligned single-walled and multi-walled carbon nanotubes in polymer nanocomposites. J. Phys. Chem. C 114(19), 8851–8860 (2010)CrossRef Duong, H.M., Yamamoto, N., Bui, K., Papavassiliou, D.V., Maruyama, S., Wardle, B.L.: Morphology effects on nonisotropic thermal conduction of aligned single-walled and multi-walled carbon nanotubes in polymer nanocomposites. J. Phys. Chem. C 114(19), 8851–8860 (2010)CrossRef
Zurück zum Zitat Eslami, Z., Yazdani, F., Mirzapour, M.A.: Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 72, 22–31 (2015)CrossRef Eslami, Z., Yazdani, F., Mirzapour, M.A.: Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 72, 22–31 (2015)CrossRef
Zurück zum Zitat Guthy, C., Du, F., Brand, S., Winey, K.I., Fischer, J.E.: Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J. Heat Transf. 129(8), 1096–1099 (2007)CrossRef Guthy, C., Du, F., Brand, S., Winey, K.I., Fischer, J.E.: Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J. Heat Transf. 129(8), 1096–1099 (2007)CrossRef
Zurück zum Zitat Haggenmueller, R., Guthy, C., Lukes, J.R., Fischer, J.E., Winey, K.I.: Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40(7), 2417–2421 (2007)CrossRef Haggenmueller, R., Guthy, C., Lukes, J.R., Fischer, J.E., Winey, K.I.: Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40(7), 2417–2421 (2007)CrossRef
Zurück zum Zitat Han, Z., Fina, A.: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011)CrossRef Han, Z., Fina, A.: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011)CrossRef
Zurück zum Zitat Hassanzadeh-Aghdam, M.K., Ansari, R., Darvizeh, A.: Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos. Part A Appl. Sci. Manuf. 96, 110–121 (2017)CrossRef Hassanzadeh-Aghdam, M.K., Ansari, R., Darvizeh, A.: Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos. Part A Appl. Sci. Manuf. 96, 110–121 (2017)CrossRef
Zurück zum Zitat Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Jamali, J.: Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites. Int. J. Heat Mass Transf. 124, 190–200 (2018a)CrossRef Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Jamali, J.: Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites. Int. J. Heat Mass Transf. 124, 190–200 (2018a)CrossRef
Zurück zum Zitat Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Kazempour, M.R.: The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int. J. Mech. Mater. Des. 14(2), 263–275 (2018b)CrossRef Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Kazempour, M.R.: The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int. J. Mech. Mater. Des. 14(2), 263–275 (2018b)CrossRef
Zurück zum Zitat Islam, M.R., Pramila, A.: Thermal conductivity of fiber reinforced composites by the FEM. J. Compos. Mater. 33(18), 1699–1715 (1999)CrossRef Islam, M.R., Pramila, A.: Thermal conductivity of fiber reinforced composites by the FEM. J. Compos. Mater. 33(18), 1699–1715 (1999)CrossRef
Zurück zum Zitat Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Terrones, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)CrossRef Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Terrones, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)CrossRef
Zurück zum Zitat Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D Appl. Phys. 44(39), 395401 (2011)CrossRef Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D Appl. Phys. 44(39), 395401 (2011)CrossRef
Zurück zum Zitat Kumlutas, D., Tavman, I.H.: A numerical and experimental study on thermal conductivity of particle filled polymer composites. J. Thermoplast. Compos. Mater. 19(4), 441–455 (2006)CrossRef Kumlutas, D., Tavman, I.H.: A numerical and experimental study on thermal conductivity of particle filled polymer composites. J. Thermoplast. Compos. Mater. 19(4), 441–455 (2006)CrossRef
Zurück zum Zitat Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech.-A/Solids 53, 241–253 (2015)MathSciNetCrossRefMATH Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech.-A/Solids 53, 241–253 (2015)MathSciNetCrossRefMATH
Zurück zum Zitat Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech.-A/Solids 64, 69–84 (2017)MathSciNetCrossRefMATH Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech.-A/Solids 64, 69–84 (2017)MathSciNetCrossRefMATH
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)CrossRef Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225(9), 2621–2643 (2014a)MathSciNetCrossRefMATH Kundalwal, S.I., Ray, M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225(9), 2621–2643 (2014a)MathSciNetCrossRefMATH
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int. J. Therm. Sci. 76, 90–100 (2014b)CrossRef Kundalwal, S.I., Ray, M.C.: Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int. J. Therm. Sci. 76, 90–100 (2014b)CrossRef
Zurück zum Zitat Kundalwal, S.I., Kumar, R.S., Ray, M.C.: Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int. J. Heat Mass Transf. 72, 440–451 (2014)CrossRef Kundalwal, S.I., Kumar, R.S., Ray, M.C.: Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int. J. Heat Mass Transf. 72, 440–451 (2014)CrossRef
Zurück zum Zitat Liang, J.Z.: Estimation of thermal conductivity for polypropylene/hollow glass bead composites. Compos. B Eng. 56, 431–434 (2014)CrossRef Liang, J.Z.: Estimation of thermal conductivity for polypropylene/hollow glass bead composites. Compos. B Eng. 56, 431–434 (2014)CrossRef
Zurück zum Zitat Liu, Y.J., Xu, N., Luo, J.F.: Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. J. Appl. Mech. 67(1), 41–49 (2000)CrossRefMATH Liu, Y.J., Xu, N., Luo, J.F.: Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. J. Appl. Mech. 67(1), 41–49 (2000)CrossRefMATH
Zurück zum Zitat Mahmoodi, M.J., Maleki, M., Hassanzadeh-Aghdam, M.K.: Static bending and free vibration analysis of hybrid fuzzy fiber reinforced nanocomposite beam-A multiscale modeling. Int. J. Appl. Mech. 10(5), 1850053(1–36) (2018)CrossRef Mahmoodi, M.J., Maleki, M., Hassanzadeh-Aghdam, M.K.: Static bending and free vibration analysis of hybrid fuzzy fiber reinforced nanocomposite beam-A multiscale modeling. Int. J. Appl. Mech. 10(5), 1850053(1–36) (2018)CrossRef
Zurück zum Zitat McIvor, S.D., Darby, M.I., Wostenholm, G.H., Yates, B., Banfield, L., King, R., Webb, A.: Thermal conductivity measurements of some glass fibre-and carbon fibre-reinforced plastics. J. Mater. Sci. 25(7), 3127–3132 (1990)CrossRef McIvor, S.D., Darby, M.I., Wostenholm, G.H., Yates, B., Banfield, L., King, R., Webb, A.: Thermal conductivity measurements of some glass fibre-and carbon fibre-reinforced plastics. J. Mater. Sci. 25(7), 3127–3132 (1990)CrossRef
Zurück zum Zitat Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007)CrossRef Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007)CrossRef
Zurück zum Zitat Nayak, R., Tarkes, D.P., Satapathy, A.: A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites. Comput. Mater. Sci. 48(3), 576–581 (2010)CrossRef Nayak, R., Tarkes, D.P., Satapathy, A.: A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites. Comput. Mater. Sci. 48(3), 576–581 (2010)CrossRef
Zurück zum Zitat Park, H.J., Badakhsh, A., Im, I.T., Kim, M.S., Park, C.W.: Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Appl. Therm. Eng. 107, 907–917 (2016)CrossRef Park, H.J., Badakhsh, A., Im, I.T., Kim, M.S., Park, C.W.: Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Appl. Therm. Eng. 107, 907–917 (2016)CrossRef
Zurück zum Zitat Pegorin, F., Pingkarawat, K., Mouritz, A.P.: Controlling the electrical conductivity of fibre-polymer composites using z-pins. Compos. Sci. Technol. 150, 167–173 (2017)CrossRef Pegorin, F., Pingkarawat, K., Mouritz, A.P.: Controlling the electrical conductivity of fibre-polymer composites using z-pins. Compos. Sci. Technol. 150, 167–173 (2017)CrossRef
Zurück zum Zitat Ray, M.C.: A shear lag model of piezoelectric composite reinforced with carbon nanotubes-coated piezoelectric fibers. Int. J. Mech. Mater. Des. 6(2), 147–155 (2010)CrossRef Ray, M.C.: A shear lag model of piezoelectric composite reinforced with carbon nanotubes-coated piezoelectric fibers. Int. J. Mech. Mater. Des. 6(2), 147–155 (2010)CrossRef
Zurück zum Zitat Shen, M.X., Cui, Y.X., He, J., Zhang, Y.M.: Thermal conductivity model of filled polymer composites. Int. J. Miner. Metall. Mater. 18(5), 623–631 (2011)CrossRef Shen, M.X., Cui, Y.X., He, J., Zhang, Y.M.: Thermal conductivity model of filled polymer composites. Int. J. Miner. Metall. Mater. 18(5), 623–631 (2011)CrossRef
Zurück zum Zitat Sprenger, S.: Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: review and outlook. J. Compos. Mater. 49(1), 53–63 (2015)MathSciNetCrossRef Sprenger, S.: Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: review and outlook. J. Compos. Mater. 49(1), 53–63 (2015)MathSciNetCrossRef
Zurück zum Zitat Sweeting, R.D., Liu, X.L.: Measurement of thermal conductivity for fibre-reinforced composites. Compos. Part A Appl. Sci. Manuf. 35(7), 933–938 (2004)CrossRef Sweeting, R.D., Liu, X.L.: Measurement of thermal conductivity for fibre-reinforced composites. Compos. Part A Appl. Sci. Manuf. 35(7), 933–938 (2004)CrossRef
Zurück zum Zitat Tang, Y., Ye, L., Zhang, D., Deng, S.: Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10wt% and 20wt% silica nanoparticles in matrix resins. Compos. Part A Appl. Sci. Manuf. 42(12), 1943–1950 (2011)CrossRef Tang, Y., Ye, L., Zhang, D., Deng, S.: Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10wt% and 20wt% silica nanoparticles in matrix resins. Compos. Part A Appl. Sci. Manuf. 42(12), 1943–1950 (2011)CrossRef
Zurück zum Zitat Tian, L., Anderson, I., Riedemann, T., Russell, A.: Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Mater. 77, 151–161 (2014)CrossRef Tian, L., Anderson, I., Riedemann, T., Russell, A.: Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Mater. 77, 151–161 (2014)CrossRef
Zurück zum Zitat Tourani, H., Molazemhosseini, A., Khavandi, A., Mirdamadi, S., Shokrgozar, M.A., Mehrjoo, M.: Effects of fibers and nanoparticles reinforcements on the mechanical and biological properties of hybrid composite polyetheretherketone/short carbon fiber/Nano-SiO2. Polym. Compos. 34(11), 1961–1969 (2013)CrossRef Tourani, H., Molazemhosseini, A., Khavandi, A., Mirdamadi, S., Shokrgozar, M.A., Mehrjoo, M.: Effects of fibers and nanoparticles reinforcements on the mechanical and biological properties of hybrid composite polyetheretherketone/short carbon fiber/Nano-SiO2. Polym. Compos. 34(11), 1961–1969 (2013)CrossRef
Zurück zum Zitat Uddin, M.F., Sun, C.T.: Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7), 1637–1643 (2008)CrossRef Uddin, M.F., Sun, C.T.: Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7), 1637–1643 (2008)CrossRef
Zurück zum Zitat Wang, S., Qiu, J.: Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos. B Eng. 41(7), 533–536 (2010)CrossRef Wang, S., Qiu, J.: Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos. B Eng. 41(7), 533–536 (2010)CrossRef
Zurück zum Zitat Wetherhold, R.C., Wang, J.: Difficulties in the theories for predicting transverse thermal conductivity of continuous fiber composites. J. Compos. Mater. 28(15), 1491–1498 (1994)CrossRef Wetherhold, R.C., Wang, J.: Difficulties in the theories for predicting transverse thermal conductivity of continuous fiber composites. J. Compos. Mater. 28(15), 1491–1498 (1994)CrossRef
Zurück zum Zitat Zeng, T., Chen, G.: Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. Trans. Am. Soc. Mech. Eng. J. Heat Transf. 123(2), 340–347 (2001)CrossRef Zeng, T., Chen, G.: Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. Trans. Am. Soc. Mech. Eng. J. Heat Transf. 123(2), 340–347 (2001)CrossRef
Zurück zum Zitat Zhang, S., Cao, X.Y., Ma, Y.M., Ke, Y.C., Zhang, J.K., Wang, F.S.: The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym. Lett. 5(7), 581–590 (2011)CrossRef Zhang, S., Cao, X.Y., Ma, Y.M., Ke, Y.C., Zhang, J.K., Wang, F.S.: The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym. Lett. 5(7), 581–590 (2011)CrossRef
Zurück zum Zitat Zweben, C.: Advances in high-performance thermal management materials: a review. J. Adv. Mater. 39(1), 3–10 (2007) Zweben, C.: Advances in high-performance thermal management materials: a review. J. Adv. Mater. 39(1), 3–10 (2007)
Metadaten
Titel
Overall thermal conductivity of unidirectional hybrid polymer nanocomposites containing SiO2 nanoparticles
Publikationsdatum
19.11.2018
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 3/2019
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-018-9428-3

Weitere Artikel der Ausgabe 3/2019

International Journal of Mechanics and Materials in Design 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.