Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Paper-Based Point-of-Care Immunoassays

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Paper-based point-of-care (POC) immunoassays (IA) enable the detection of analytes at the remote, decentralized, and personalized settings. Based on their low-cost, simplicity, and rapid analyte detection, they are ideal for POC diagnostic applications in developing countries, which have limited healthcare resources, personnel, and infrastructure. They obviate the limitations of conventional immunodiagnostic assays and the upcoming automated immunoassays, such as the need for highly-skilled analysts, costly infrastructure, bulky and expensive instruments, continuous power supply, and complex process steps. The emerging trend is toward the development of fully-integrated paper-based IAs (PIAs) that can be read by smartphones (SP) or smart readers. This chapter discusses the various PIAs that have been developed to date together with the future trends and challenges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vashist SK, Luong JHT. Handbook of immunoassay technologies: approaches, performances, and applications. London: Academic Press; 2018. Vashist SK, Luong JHT. Handbook of immunoassay technologies: approaches, performances, and applications. London: Academic Press; 2018.
2.
Zurück zum Zitat Ahmed S, Bui MP, Abbas A. Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron. 2016;77:249–63.CrossRef Ahmed S, Bui MP, Abbas A. Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron. 2016;77:249–63.CrossRef
3.
Zurück zum Zitat Chen Y-H, Kuo Z-K, Cheng C-M. Paper–a potential platform in pharmaceutical development. Trends Biotech. 2015;33(1):4–9.CrossRef Chen Y-H, Kuo Z-K, Cheng C-M. Paper–a potential platform in pharmaceutical development. Trends Biotech. 2015;33(1):4–9.CrossRef
4.
Zurück zum Zitat Ge L, Yu J, Ge S, Yan M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal Bioanal Chem. 2014;406(23):5613–30.CrossRef Ge L, Yu J, Ge S, Yan M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal Bioanal Chem. 2014;406(23):5613–30.CrossRef
5.
Zurück zum Zitat Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97.CrossRef Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97.CrossRef
6.
Zurück zum Zitat Liana DD, Raguse B, Gooding JJ, Chow E. Recent advances in paper-based sensors. Sensors. 2012;12(9):11505–26.CrossRef Liana DD, Raguse B, Gooding JJ, Chow E. Recent advances in paper-based sensors. Sensors. 2012;12(9):11505–26.CrossRef
7.
Zurück zum Zitat Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2009;82(1):3–10.CrossRef Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2009;82(1):3–10.CrossRef
8.
Zurück zum Zitat Parolo C, Merkoci A. Paper-based nanobiosensors for diagnostics. Chem Soc Rev. 2013;42(2):450–7.CrossRef Parolo C, Merkoci A. Paper-based nanobiosensors for diagnostics. Chem Soc Rev. 2013;42(2):450–7.CrossRef
9.
Zurück zum Zitat Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem. 2009;28(8):925–42.CrossRef Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem. 2009;28(8):925–42.CrossRef
10.
Zurück zum Zitat Rolland JP, Mourey DA. Paper as a novel material platform for devices. MRS Bull. 2013;38(04):299–305.CrossRef Rolland JP, Mourey DA. Paper as a novel material platform for devices. MRS Bull. 2013;38(04):299–305.CrossRef
11.
Zurück zum Zitat Then WL, Garnier G. Paper diagnostics in biomedicine. Rev Anal Chem. 2013;32(4):269–94.CrossRef Then WL, Garnier G. Paper diagnostics in biomedicine. Rev Anal Chem. 2013;32(4):269–94.CrossRef
12.
Zurück zum Zitat Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):11301–1130113.CrossRef Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):11301–1130113.CrossRef
13.
Zurück zum Zitat Jaganathan S, Vahedi Tafreshi H, Pourdeyhimi B. Modeling liquid porosimetry in modeled and imaged 3-D fibrous microstructures. J Colloid Interface Sci. 2008;326(1):166–75.CrossRef Jaganathan S, Vahedi Tafreshi H, Pourdeyhimi B. Modeling liquid porosimetry in modeled and imaged 3-D fibrous microstructures. J Colloid Interface Sci. 2008;326(1):166–75.CrossRef
15.
Zurück zum Zitat Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13(12):2210–51.CrossRef Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13(12):2210–51.CrossRef
16.
Zurück zum Zitat Wong R, Tse H. Lateral flow immunoassay. New York: Humana Press; 2009.CrossRef Wong R, Tse H. Lateral flow immunoassay. New York: Humana Press; 2009.CrossRef
17.
Zurück zum Zitat Han YL, Wang W, Hu J, Huang G, Wang S, Lee WG, et al. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite. Lab Chip. 2013;13(24):4745–9.CrossRef Han YL, Wang W, Hu J, Huang G, Wang S, Lee WG, et al. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite. Lab Chip. 2013;13(24):4745–9.CrossRef
18.
Zurück zum Zitat Park S, Mohanty N, Suk JW, Nagaraja A, An J, Piner RD, et al. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater. 2010;22(15):1736–40.CrossRef Park S, Mohanty N, Suk JW, Nagaraja A, An J, Piner RD, et al. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater. 2010;22(15):1736–40.CrossRef
19.
Zurück zum Zitat Nanomaterials SB. Paper powers battery breakthrough. Nat Nanotechnol. 2007;2(10):598–9.CrossRef Nanomaterials SB. Paper powers battery breakthrough. Nat Nanotechnol. 2007;2(10):598–9.CrossRef
20.
Zurück zum Zitat Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009;3(7):1745–52.CrossRef Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009;3(7):1745–52.CrossRef
21.
Zurück zum Zitat Chen X, Chen J, Wang F, Xiang X, Luo M, Ji X, et al. Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens Bioelectron. 2012;35(1):363–8.CrossRef Chen X, Chen J, Wang F, Xiang X, Luo M, Ji X, et al. Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens Bioelectron. 2012;35(1):363–8.CrossRef
22.
Zurück zum Zitat He M, Liu Z. Paper-based microfluidic device with upconversion fluorescence assay. Anal Chem. 2013;85(24):11691–4.CrossRef He M, Liu Z. Paper-based microfluidic device with upconversion fluorescence assay. Anal Chem. 2013;85(24):11691–4.CrossRef
23.
Zurück zum Zitat Lei KF, Yang S-I, Tsai S-W, Hsu H-T. Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin–avidin binding interaction. Talanta. 2015;134:264–70.CrossRef Lei KF, Yang S-I, Tsai S-W, Hsu H-T. Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin–avidin binding interaction. Talanta. 2015;134:264–70.CrossRef
24.
Zurück zum Zitat Li X, Tian J, Shen W. Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal Bioanal Chem. 2010;396(1):495–501.CrossRef Li X, Tian J, Shen W. Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal Bioanal Chem. 2010;396(1):495–501.CrossRef
25.
Zurück zum Zitat Liu F, Zhang C. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sens Actuators B Chem. 2015;209:399–406.CrossRef Liu F, Zhang C. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sens Actuators B Chem. 2015;209:399–406.CrossRef
26.
Zurück zum Zitat Mao X, Huang TJ. Microfluidic diagnostics for the developing world. Lab Chip. 2012;12(8):1412–6.CrossRef Mao X, Huang TJ. Microfluidic diagnostics for the developing world. Lab Chip. 2012;12(8):1412–6.CrossRef
27.
Zurück zum Zitat Martinez AW, Phillips ST, Carrilho E, Thomas SW 3rd, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem. 2008;80(10):3699–707.CrossRef Martinez AW, Phillips ST, Carrilho E, Thomas SW 3rd, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem. 2008;80(10):3699–707.CrossRef
28.
Zurück zum Zitat Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A. 2008;105(50):19606–11.CrossRef Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A. 2008;105(50):19606–11.CrossRef
29.
Zurück zum Zitat Mu X, Zhang L, Chang S, Cui W, Zheng Z. Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem. 2014;86(11):5338–44.CrossRef Mu X, Zhang L, Chang S, Cui W, Zheng Z. Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem. 2014;86(11):5338–44.CrossRef
30.
Zurück zum Zitat Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta. 2013;788:39–45.CrossRef Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta. 2013;788:39–45.CrossRef
31.
Zurück zum Zitat Rattanarat P, Dungchai W, Cate DM, Siangproh W, Volckens J, Chailapakul O, et al. A microfluidic paper-based analytical device for rapid quantification of particulate chromium. Anal Chim Acta. 2013;800:50–5.CrossRef Rattanarat P, Dungchai W, Cate DM, Siangproh W, Volckens J, Chailapakul O, et al. A microfluidic paper-based analytical device for rapid quantification of particulate chromium. Anal Chim Acta. 2013;800:50–5.CrossRef
32.
Zurück zum Zitat Schilling KM, Lepore AL, Kurian JA, Martinez AW. Fully enclosed microfluidic paper-based analytical devices. Anal Chem. 2012;84(3):1579–85.CrossRef Schilling KM, Lepore AL, Kurian JA, Martinez AW. Fully enclosed microfluidic paper-based analytical devices. Anal Chem. 2012;84(3):1579–85.CrossRef
33.
Zurück zum Zitat Wu Y, Xue P, Hui KM, Kang Y. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2014;52:180–7.CrossRef Wu Y, Xue P, Hui KM, Kang Y. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2014;52:180–7.CrossRef
34.
Zurück zum Zitat Yu J, Wang S, Ge L, Ge S. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron. 2011;26(7):3284–9.CrossRef Yu J, Wang S, Ge L, Ge S. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron. 2011;26(7):3284–9.CrossRef
35.
Zurück zum Zitat Zhao C, Thuo MM, Liu X. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci Technol Adv Mater. 2013;14(5):054402.CrossRef Zhao C, Thuo MM, Liu X. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci Technol Adv Mater. 2013;14(5):054402.CrossRef
36.
Zurück zum Zitat Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13(22):4352–7.CrossRef Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13(22):4352–7.CrossRef
37.
Zurück zum Zitat Fu E, Ramsey SA, Kauffman P, Lutz B, Yager P. Transport in two-dimensional paper networks. Microfluid Nanofluidics. 2011;10(1):29–35.CrossRef Fu E, Ramsey SA, Kauffman P, Lutz B, Yager P. Transport in two-dimensional paper networks. Microfluid Nanofluidics. 2011;10(1):29–35.CrossRef
38.
Zurück zum Zitat Song MB, Joung HA, Oh YK, Jung K, Ahn YD, Kim MG. Tear-off patterning: a simple method for patterning nitrocellulose membranes to improve the performance of point-of-care diagnostic biosensors. Lab Chip. 2015;15(14):3006–12.CrossRef Song MB, Joung HA, Oh YK, Jung K, Ahn YD, Kim MG. Tear-off patterning: a simple method for patterning nitrocellulose membranes to improve the performance of point-of-care diagnostic biosensors. Lab Chip. 2015;15(14):3006–12.CrossRef
39.
Zurück zum Zitat Noh H, Phillips ST. Fluidic timers for time-dependent, point-of-care assays on paper. Anal Chem. 2010;82(19):8071–8.CrossRef Noh H, Phillips ST. Fluidic timers for time-dependent, point-of-care assays on paper. Anal Chem. 2010;82(19):8071–8.CrossRef
40.
Zurück zum Zitat Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–5.CrossRef Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–5.CrossRef
41.
Zurück zum Zitat Zhong Z, Wang Z, Huang G. Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsyst Technol. 2012;18(5):649–59.CrossRef Zhong Z, Wang Z, Huang G. Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsyst Technol. 2012;18(5):649–59.CrossRef
42.
Zurück zum Zitat Lu Y, Shi W, Qin J, Lin B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem. 2009;82(1):329–35.CrossRef Lu Y, Shi W, Qin J, Lin B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem. 2009;82(1):329–35.CrossRef
43.
Zurück zum Zitat Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;46(8):1318–20.CrossRef Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;46(8):1318–20.CrossRef
44.
Zurück zum Zitat Free AH, Adams EC, Kercher ML, Free HM, Cook MH. Simple specific test for urine glucose. Clin Chem. 1957;3(3):163–8. Free AH, Adams EC, Kercher ML, Free HM, Cook MH. Simple specific test for urine glucose. Clin Chem. 1957;3(3):163–8.
45.
Zurück zum Zitat Glad C, Grubb AO. Immunocapillary migration—a new method for immunochemical quantitation. Anal Biochem. 1978;85(1):180–7.CrossRef Glad C, Grubb AO. Immunocapillary migration—a new method for immunochemical quantitation. Anal Biochem. 1978;85(1):180–7.CrossRef
46.
Zurück zum Zitat Vaitukaitis JL, Braunstein GD, Ross GT. A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am J Obstet Gynecol. 1972;113(6):751–8.CrossRef Vaitukaitis JL, Braunstein GD, Ross GT. A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am J Obstet Gynecol. 1972;113(6):751–8.CrossRef
47.
Zurück zum Zitat Hawkes R, Niday E, Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982;119(1):142–7.CrossRef Hawkes R, Niday E, Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982;119(1):142–7.CrossRef
48.
Zurück zum Zitat Le S, Zhou H, Nie J, Cao C, Yang J, Pan H, et al. Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout. Analyst. 2017;142(3):511–6.CrossRef Le S, Zhou H, Nie J, Cao C, Yang J, Pan H, et al. Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout. Analyst. 2017;142(3):511–6.CrossRef
49.
Zurück zum Zitat Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRef Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRef
50.
Zurück zum Zitat Young RO, Young SR. The pH miracle: balance your diet, reclaim your health. New York: Hachette UK; 2008. Young RO, Young SR. The pH miracle: balance your diet, reclaim your health. New York: Hachette UK; 2008.
51.
Zurück zum Zitat Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, et al. Paper-based ELISA. Angew Chem Int Ed Engl. 2010;49(28):4771–4.CrossRef Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, et al. Paper-based ELISA. Angew Chem Int Ed Engl. 2010;49(28):4771–4.CrossRef
52.
Zurück zum Zitat Tian J, Li X, Shen W. Printed two-dimensional micro-zone plates for chemical analysis and ELISA. Lab Chip. 2011;11(17):2869–75.CrossRef Tian J, Li X, Shen W. Printed two-dimensional micro-zone plates for chemical analysis and ELISA. Lab Chip. 2011;11(17):2869–75.CrossRef
53.
Zurück zum Zitat Avrameas S, Ternynck T. Enzyme-linked immunosorbent assay (ELISA). 1998. Avrameas S, Ternynck T. Enzyme-linked immunosorbent assay (ELISA). 1998.
54.
Zurück zum Zitat O’Connor EF, Paterson S, De La Rica R. Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays. Anal Bioanal Chem. 2016;408(13):3389–93.CrossRef O’Connor EF, Paterson S, De La Rica R. Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays. Anal Bioanal Chem. 2016;408(13):3389–93.CrossRef
55.
Zurück zum Zitat Bahadır EB, Sezgintürk MK. Lateral flow assays: principles, designs and labels. Trends Anal Chem. 2016;82:286–306.CrossRef Bahadır EB, Sezgintürk MK. Lateral flow assays: principles, designs and labels. Trends Anal Chem. 2016;82:286–306.CrossRef
56.
Zurück zum Zitat Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111–20.CrossRef Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111–20.CrossRef
57.
Zurück zum Zitat Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.CrossRef Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.CrossRef
58.
Zurück zum Zitat Lin M, Zhao Y, Wang S, Liu M, Duan Z, Chen Y, et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol Adv. 2012;30(6):1551–61.CrossRef Lin M, Zhao Y, Wang S, Liu M, Duan Z, Chen Y, et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol Adv. 2012;30(6):1551–61.CrossRef
59.
Zurück zum Zitat Ge C, Yu L, Fang Z, Zeng L. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.CrossRef Ge C, Yu L, Fang Z, Zeng L. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.CrossRef
60.
Zurück zum Zitat Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, et al. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10(4):477–83.CrossRef Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, et al. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10(4):477–83.CrossRef
61.
Zurück zum Zitat Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184–96.CrossRef Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184–96.CrossRef
62.
Zurück zum Zitat Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, et al. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron. 2011;30(1):145–50.CrossRef Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, et al. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron. 2011;30(1):145–50.CrossRef
63.
Zurück zum Zitat van den Berk GE, Frissen PH, Regez RM, Rietra PJ. Evaluation of the rapid immunoassay determine HIV 1/2 for detection of antibodies to human immunodeficiency virus types 1 and 2. J Clin Microbiol. 2003;41(8):3868–9.CrossRef van den Berk GE, Frissen PH, Regez RM, Rietra PJ. Evaluation of the rapid immunoassay determine HIV 1/2 for detection of antibodies to human immunodeficiency virus types 1 and 2. J Clin Microbiol. 2003;41(8):3868–9.CrossRef
64.
Zurück zum Zitat Sajid M, Kawde A-N, Daud M. Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc. 2015;19(6):689–705.CrossRef Sajid M, Kawde A-N, Daud M. Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc. 2015;19(6):689–705.CrossRef
65.
Zurück zum Zitat Liu W, Cassano CL, Xu X, Fan ZH. Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum. Anal Chem. 2013;85(21):10270–6.CrossRef Liu W, Cassano CL, Xu X, Fan ZH. Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum. Anal Chem. 2013;85(21):10270–6.CrossRef
66.
Zurück zum Zitat Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89.CrossRef Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89.CrossRef
67.
Zurück zum Zitat Nilghaz A, Wicaksono DH, Gustiono D, Majid FAA, Supriyanto E, Kadir MRA. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip. 2012;12(1):209–18.CrossRef Nilghaz A, Wicaksono DH, Gustiono D, Majid FAA, Supriyanto E, Kadir MRA. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip. 2012;12(1):209–18.CrossRef
68.
Zurück zum Zitat Cassano CL, Fan ZH. Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluidic Nanofluidics. 2013;15(2):173–81.CrossRef Cassano CL, Fan ZH. Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluidic Nanofluidics. 2013;15(2):173–81.CrossRef
69.
Zurück zum Zitat Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci. 2008;105(50):19606–11.CrossRef Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci. 2008;105(50):19606–11.CrossRef
70.
Zurück zum Zitat Lewis GG, DiTucci MJ, Baker MS, Phillips ST. High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip. 2012;12(15):2630–3.CrossRef Lewis GG, DiTucci MJ, Baker MS, Phillips ST. High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip. 2012;12(15):2630–3.CrossRef
71.
Zurück zum Zitat Schilling KM, Jauregui D, Martinez AW. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Lab Chip. 2013;13(4):628–31.CrossRef Schilling KM, Jauregui D, Martinez AW. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Lab Chip. 2013;13(4):628–31.CrossRef
72.
Zurück zum Zitat Liu H, Crooks RM. Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc. 2011;133(44):17564–6.CrossRef Liu H, Crooks RM. Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc. 2011;133(44):17564–6.CrossRef
73.
Zurück zum Zitat Liu X, Cheng C, Martinez A, Mirica K, Li X, Phillips S, et al., editors. A portable microfluidic paper-based device for ELISA. Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on. IEEE; 2011. Liu X, Cheng C, Martinez A, Mirica K, Li X, Phillips S, et al., editors. A portable microfluidic paper-based device for ELISA. Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on. IEEE; 2011.
74.
Zurück zum Zitat Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip. 2013;13(1):126–35.CrossRef Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip. 2013;13(1):126–35.CrossRef
75.
Zurück zum Zitat Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10(22):3163–9.CrossRef Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10(22):3163–9.CrossRef
76.
Zurück zum Zitat Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.CrossRef Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.CrossRef
77.
Zurück zum Zitat Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron. 2016;75:166–80.CrossRef Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron. 2016;75:166–80.CrossRef
78.
Zurück zum Zitat Rivasa L, Medina-Sáncheza M, de la Escosura-Muñiza A, Merkoçi A. Improving sensitivity of gold nanoparticles-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip. 2014;14:4406–14.CrossRef Rivasa L, Medina-Sáncheza M, de la Escosura-Muñiza A, Merkoçi A. Improving sensitivity of gold nanoparticles-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip. 2014;14:4406–14.CrossRef
79.
Zurück zum Zitat Posthuma-Trumpie GA, Wichers JH, Koets M, Berendsen LB, van Amerongen A. Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays. Anal Bioanal Chem. 2012;402(2):593–600.CrossRef Posthuma-Trumpie GA, Wichers JH, Koets M, Berendsen LB, van Amerongen A. Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays. Anal Bioanal Chem. 2012;402(2):593–600.CrossRef
80.
Zurück zum Zitat Wang D-B, Tian B, Zhang Z-P, Deng J-Y, Cui Z-Q, Yang R-F, et al. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detectionsystem. Biosens Bioelectron. 2013;42:661–7.CrossRef Wang D-B, Tian B, Zhang Z-P, Deng J-Y, Cui Z-Q, Yang R-F, et al. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detectionsystem. Biosens Bioelectron. 2013;42:661–7.CrossRef
81.
Zurück zum Zitat Wang S, Ge L, Song X, Yu J, Ge S, Huang J, et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron. 2012;31(1):212–8.CrossRef Wang S, Ge L, Song X, Yu J, Ge S, Huang J, et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron. 2012;31(1):212–8.CrossRef
82.
Zurück zum Zitat Li X, Zwanenburg P, Liu X. Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip. 2013;13(13):2609–14.CrossRef Li X, Zwanenburg P, Liu X. Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip. 2013;13(13):2609–14.CrossRef
83.
Zurück zum Zitat Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev. 2015;115(19):10575–636.CrossRef Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev. 2015;115(19):10575–636.CrossRef
84.
Zurück zum Zitat Quesada-Gonzalez D, Merkoci A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron. 2015;73:47–63.CrossRef Quesada-Gonzalez D, Merkoci A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron. 2015;73:47–63.CrossRef
85.
Zurück zum Zitat Safenkova I, Zherdev A, Dzantiev B. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem. 2012;403(6):1595–605.CrossRef Safenkova I, Zherdev A, Dzantiev B. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem. 2012;403(6):1595–605.CrossRef
86.
Zurück zum Zitat Parolo C, de la Escosura-Muniz A, Merkoci A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron. 2013;40(1):412–6.CrossRef Parolo C, de la Escosura-Muniz A, Merkoci A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron. 2013;40(1):412–6.CrossRef
87.
Zurück zum Zitat Shen G, Zhang S, Hu X. Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates. Clin Biochem. 2013;46(16–17):1734–8.CrossRef Shen G, Zhang S, Hu X. Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates. Clin Biochem. 2013;46(16–17):1734–8.CrossRef
88.
Zurück zum Zitat Xu H, Chen J, Birrenkott J, Zhao JX, Takalkar S, Baryeh K, et al. Gold-nanoparticle-decorated silica nanorods for sensitive visual detection of proteins. Anal Chem. 2014;86(15):7351–9.CrossRef Xu H, Chen J, Birrenkott J, Zhao JX, Takalkar S, Baryeh K, et al. Gold-nanoparticle-decorated silica nanorods for sensitive visual detection of proteins. Anal Chem. 2014;86(15):7351–9.CrossRef
89.
Zurück zum Zitat Tang D, Sauceda JC, Lin Z, Ott S, Basova E, Goryacheva I, et al. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron. 2009;25(2):514–8.CrossRef Tang D, Sauceda JC, Lin Z, Ott S, Basova E, Goryacheva I, et al. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron. 2009;25(2):514–8.CrossRef
90.
Zurück zum Zitat Fu Q, Liu HL, Wu Z, Liu A, Yao C, Li X, et al. Rough surface Au@ Ag core–shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. J Nanobiotech. 2015;13(1):81.CrossRef Fu Q, Liu HL, Wu Z, Liu A, Yao C, Li X, et al. Rough surface Au@ Ag core–shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. J Nanobiotech. 2015;13(1):81.CrossRef
91.
Zurück zum Zitat Blažková M, Rauch P, Fukal L. Strip-based immunoassay for rapid detection of thiabendazole. Biosens Bioelectron. 2010;25(9):2122–8.CrossRef Blažková M, Rauch P, Fukal L. Strip-based immunoassay for rapid detection of thiabendazole. Biosens Bioelectron. 2010;25(9):2122–8.CrossRef
92.
Zurück zum Zitat Linares EM, Kubota LT, Michaelis J, Thalhammer S. Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J Immunol Methods. 2012;375(1–2):264–70.CrossRef Linares EM, Kubota LT, Michaelis J, Thalhammer S. Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J Immunol Methods. 2012;375(1–2):264–70.CrossRef
93.
Zurück zum Zitat Suarez-Pantaleon C, Wichers J, Abad-Somovilla A, van Amerongen A, Abad-Fuentes A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens Bioelectron. 2013;42:170–6.CrossRef Suarez-Pantaleon C, Wichers J, Abad-Somovilla A, van Amerongen A, Abad-Fuentes A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens Bioelectron. 2013;42:170–6.CrossRef
94.
Zurück zum Zitat Huang Y-M, Dao-Feng L, Wei-Hua L, Xiong Y-H, Wan-Chun Y, Kun L, et al. Rapid detection of aflatoxin M1 by immunochromatography combined with enrichment based on immunomagnetic nanobead. Chin J Anal Chem. 2014;42(5):654–9.CrossRef Huang Y-M, Dao-Feng L, Wei-Hua L, Xiong Y-H, Wan-Chun Y, Kun L, et al. Rapid detection of aflatoxin M1 by immunochromatography combined with enrichment based on immunomagnetic nanobead. Chin J Anal Chem. 2014;42(5):654–9.CrossRef
95.
Zurück zum Zitat Wang Y, Xu H, Wei M, Gu H, Xu Q, Zhu W. Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay. Mater Sci Eng C. 2009;29(3):714–8.CrossRef Wang Y, Xu H, Wei M, Gu H, Xu Q, Zhu W. Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay. Mater Sci Eng C. 2009;29(3):714–8.CrossRef
96.
Zurück zum Zitat Liu C, Jia Q, Yang C, Qiao R, Jing L, Wang L, et al. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem. 2011;83(17):6778–84.CrossRef Liu C, Jia Q, Yang C, Qiao R, Jing L, Wang L, et al. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem. 2011;83(17):6778–84.CrossRef
97.
Zurück zum Zitat Yan J, Liu Y, Wang Y, Xu X, Lu Y, Pan Y, et al. Effect of physiochemical property of Fe3O4 particle on magnetic lateral flow immunochromatographic assay. Sens Actuators B Chem. 2014;197:129–36.CrossRef Yan J, Liu Y, Wang Y, Xu X, Lu Y, Pan Y, et al. Effect of physiochemical property of Fe3O4 particle on magnetic lateral flow immunochromatographic assay. Sens Actuators B Chem. 2014;197:129–36.CrossRef
98.
Zurück zum Zitat Tang Y, Li Z, He N, Zhang L, Ma C, Li X, et al. Preparation of functional magnetic nanoparticles mediated with PEG-4000 and application in Pseudomonas aeruginosa rapid detection. J Biomed Nanotechnol. 2013;9(2):312–7.CrossRef Tang Y, Li Z, He N, Zhang L, Ma C, Li X, et al. Preparation of functional magnetic nanoparticles mediated with PEG-4000 and application in Pseudomonas aeruginosa rapid detection. J Biomed Nanotechnol. 2013;9(2):312–7.CrossRef
99.
Zurück zum Zitat Xu X, Deng C, Gao M, Yu W, Yang P, Zhang X. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater. 2006;18(24):3289–93.CrossRef Xu X, Deng C, Gao M, Yu W, Yang P, Zhang X. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater. 2006;18(24):3289–93.CrossRef
100.
Zurück zum Zitat Qin Z, Chan WC, Boulware DR, Akkin T, Butler EK, Bischof JC. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew Chem Int Ed. 2012;51(18):4358–61.CrossRef Qin Z, Chan WC, Boulware DR, Akkin T, Butler EK, Bischof JC. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew Chem Int Ed. 2012;51(18):4358–61.CrossRef
101.
Zurück zum Zitat Wang Y, Qin Z, Boulware DR, Pritt BS, Sloan LM, Gonzalez IJ, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays. Anal Chem. 2016;88(23):11774–82.CrossRef Wang Y, Qin Z, Boulware DR, Pritt BS, Sloan LM, Gonzalez IJ, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays. Anal Chem. 2016;88(23):11774–82.CrossRef
102.
Zurück zum Zitat Shen S, Henry A, Tong J, Zheng R, Chen G. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotech. 2010;5(4):251.CrossRef Shen S, Henry A, Tong J, Zheng R, Chen G. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotech. 2010;5(4):251.CrossRef
103.
Zurück zum Zitat Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2(1):30–8.CrossRef Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2(1):30–8.CrossRef
104.
Zurück zum Zitat Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87(1):19–41.CrossRef Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87(1):19–41.CrossRef
105.
Zurück zum Zitat Luo S, Xiao H, Yang S, Liu C, Liang J, Tang Y. Ultrasensitive detection of pentachlorophenol based on enhanced electrochemiluminescence of Au nanoclusters/graphene hybrids. Sens Actuators B Chem. 2014;194:325–31.CrossRef Luo S, Xiao H, Yang S, Liu C, Liang J, Tang Y. Ultrasensitive detection of pentachlorophenol based on enhanced electrochemiluminescence of Au nanoclusters/graphene hybrids. Sens Actuators B Chem. 2014;194:325–31.CrossRef
106.
Zurück zum Zitat Xu Y, Lou B, Lv Z, Zhou Z, Zhang L, Wang E. Paper based solid-state electrochemiluminescence sensor using poly (sodium 4-styrenesulfonate) functionalized graphene/nafion composite film. Anal Chim Acta. 2013;763:20–7.CrossRef Xu Y, Lou B, Lv Z, Zhou Z, Zhang L, Wang E. Paper based solid-state electrochemiluminescence sensor using poly (sodium 4-styrenesulfonate) functionalized graphene/nafion composite film. Anal Chim Acta. 2013;763:20–7.CrossRef
107.
Zurück zum Zitat Li Z, Liu H, Ouyang C, Hong Wee W, Cui X, Jian Lu T, et al. Recent advances in pen-based writing electronics and their emerging applications. Adv Funct Mater. 2016;26(2):165–80.CrossRef Li Z, Liu H, Ouyang C, Hong Wee W, Cui X, Jian Lu T, et al. Recent advances in pen-based writing electronics and their emerging applications. Adv Funct Mater. 2016;26(2):165–80.CrossRef
108.
Zurück zum Zitat Li Z, Li F, Hu J, Wee WH, Han YL, Pingguan-Murphy B, et al. Direct writing electrodes using a ball pen for paper-based point-of-care testing. Analyst. 2015;140(16):5526–35.CrossRef Li Z, Li F, Hu J, Wee WH, Han YL, Pingguan-Murphy B, et al. Direct writing electrodes using a ball pen for paper-based point-of-care testing. Analyst. 2015;140(16):5526–35.CrossRef
109.
Zurück zum Zitat Siegel AC, Phillips ST, Wiley BJ, Whitesides GM. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip. 2009;9(19):2775–81.CrossRef Siegel AC, Phillips ST, Wiley BJ, Whitesides GM. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip. 2009;9(19):2775–81.CrossRef
110.
Zurück zum Zitat Matsuda Y, Shibayama S, Uete K, Yamaguchi H, Niimi T. Electric conductive pattern element fabricated using commercial inkjet printer for paper-based analytical devices. Anal Chem. 2015;87(11):5762–5.CrossRef Matsuda Y, Shibayama S, Uete K, Yamaguchi H, Niimi T. Electric conductive pattern element fabricated using commercial inkjet printer for paper-based analytical devices. Anal Chem. 2015;87(11):5762–5.CrossRef
111.
Zurück zum Zitat Li Z, Hu J, Xu F, Li F. Recent developments of three-dimensional paper-based electrochemical devices for cancer cell detection and anticancer drug screening. Curr Pharm Biotechnol. 2016;17(9):802–9.CrossRef Li Z, Hu J, Xu F, Li F. Recent developments of three-dimensional paper-based electrochemical devices for cancer cell detection and anticancer drug screening. Curr Pharm Biotechnol. 2016;17(9):802–9.CrossRef
112.
Zurück zum Zitat Wang P, Ge L, Yan M, Song X, Ge S, Yu J. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens Bioelectron. 2012;32(1):238–43.CrossRef Wang P, Ge L, Yan M, Song X, Ge S, Yu J. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens Bioelectron. 2012;32(1):238–43.CrossRef
113.
Zurück zum Zitat Ge L, Yan J, Song X, Yan M, Ge S, Yu J. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials. 2012;33(4):1024–31.CrossRef Ge L, Yan J, Song X, Yan M, Ge S, Yu J. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials. 2012;33(4):1024–31.CrossRef
114.
Zurück zum Zitat Li W, Li L, Li M, Yu J, Ge S, Yan M, et al. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold–chitosan. Chem Commun. 2013;49(83):9540–2.CrossRef Li W, Li L, Li M, Yu J, Ge S, Yan M, et al. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold–chitosan. Chem Commun. 2013;49(83):9540–2.CrossRef
115.
Zurück zum Zitat Ma C, Li W, Kong Q, Yang H, Bian Z, Song X, et al. 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosens Bioelectron. 2015;63:7–13.CrossRef Ma C, Li W, Kong Q, Yang H, Bian Z, Song X, et al. 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosens Bioelectron. 2015;63:7–13.CrossRef
116.
Zurück zum Zitat Wang DB, Tian B, Zhang ZP, Wang XY, Fleming J, Bi LJ, et al. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on “Road Closure”. Biosens Bioelectron. 2015;67:608–14.CrossRef Wang DB, Tian B, Zhang ZP, Wang XY, Fleming J, Bi LJ, et al. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on “Road Closure”. Biosens Bioelectron. 2015;67:608–14.CrossRef
117.
Zurück zum Zitat Ge L, Wang S, Song X, Ge S, Yu J. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip. 2012;12(17):3150–8.CrossRef Ge L, Wang S, Song X, Ge S, Yu J. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip. 2012;12(17):3150–8.CrossRef
118.
Zurück zum Zitat Li W, Ge S, Wang S, Yan M, Ge L, Yu J. Highly sensitive chemiluminescence immunoassay on chitosan membrane modified paper platform using TiO2 nanoparticles/multiwalled carbon nanotubes as label. Luminescence. 2013;28(4):496–502.CrossRef Li W, Ge S, Wang S, Yan M, Ge L, Yu J. Highly sensitive chemiluminescence immunoassay on chitosan membrane modified paper platform using TiO2 nanoparticles/multiwalled carbon nanotubes as label. Luminescence. 2013;28(4):496–502.CrossRef
119.
Zurück zum Zitat Wang S, Ge L, Song X, Yan M, Ge S, Yu J, et al. Simple and covalent fabrication of a paper device and its application in sensitive chemiluminescence immunoassay. Analyst. 2012;137(16):3821–7.CrossRef Wang S, Ge L, Song X, Yan M, Ge S, Yu J, et al. Simple and covalent fabrication of a paper device and its application in sensitive chemiluminescence immunoassay. Analyst. 2012;137(16):3821–7.CrossRef
120.
Zurück zum Zitat Li L, Li W, Ma C, Yang H, Ge S, Yu J. Paper-based electrochemiluminescence immunodevice for carcinoembryonic antigen using nanoporous gold-chitosan hybrids and graphene quantum dots functionalized Au@Pt. Sens Actuators B Chem. 2014;202:314–22.CrossRef Li L, Li W, Ma C, Yang H, Ge S, Yu J. Paper-based electrochemiluminescence immunodevice for carcinoembryonic antigen using nanoporous gold-chitosan hybrids and graphene quantum dots functionalized Au@Pt. Sens Actuators B Chem. 2014;202:314–22.CrossRef
121.
Zurück zum Zitat Li W, Li M, Ge S, Yan M, Huang J, Yu J. Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy. Anal Chim Acta. 2013;767:66–74.CrossRef Li W, Li M, Ge S, Yan M, Huang J, Yu J. Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy. Anal Chim Acta. 2013;767:66–74.CrossRef
122.
Zurück zum Zitat Yan J, Ge L, Song X, Yan M, Ge S, Yu J. Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem Eur J. 2012;18(16):4938–45.CrossRef Yan J, Ge L, Song X, Yan M, Ge S, Yu J. Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem Eur J. 2012;18(16):4938–45.CrossRef
123.
Zurück zum Zitat Parolo C, Medina-Sanchez M, de la Escosura-Muniz A, Merkoci A. Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip. 2013;13(3):386–90.CrossRef Parolo C, Medina-Sanchez M, de la Escosura-Muniz A, Merkoci A. Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip. 2013;13(3):386–90.CrossRef
124.
Zurück zum Zitat Shan S, Lai W, Xiong Y, Wei H, Xu H. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J Agric Food Chem. 2015;63(3):745–53.CrossRef Shan S, Lai W, Xiong Y, Wei H, Xu H. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J Agric Food Chem. 2015;63(3):745–53.CrossRef
125.
Zurück zum Zitat Qian S, Bau HH. A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal Biochem. 2003;322(1):89–98.CrossRef Qian S, Bau HH. A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal Biochem. 2003;322(1):89–98.CrossRef
126.
Zurück zum Zitat Toley BJ, McKenzie B, Liang T, Buser JR, Yager P, Fu E. Tunable-delay shunts for paper microfluidic devices. Anal Chem. 2013;85(23):11545–52.CrossRef Toley BJ, McKenzie B, Liang T, Buser JR, Yager P, Fu E. Tunable-delay shunts for paper microfluidic devices. Anal Chem. 2013;85(23):11545–52.CrossRef
127.
Zurück zum Zitat Liu Z, Hu J, Zhao Y, Qu Z, Xu F. Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl Therm Eng. 2015;88:280–7.CrossRef Liu Z, Hu J, Zhao Y, Qu Z, Xu F. Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl Therm Eng. 2015;88:280–7.CrossRef
128.
Zurück zum Zitat Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip. 2013;13(14):2840–7.CrossRef Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip. 2013;13(14):2840–7.CrossRef
129.
Zurück zum Zitat Whitesides GM. Viewpoint on “Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics”. Lab Chip. 2013;13(20):4004–5.CrossRef Whitesides GM. Viewpoint on “Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics”. Lab Chip. 2013;13(20):4004–5.CrossRef
130.
Zurück zum Zitat Li C, Boban M, Snyder SA, Kobaku SP, Kwon G, Mehta G, et al. Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv Funct Mater. 2016;26(33):6121–31.CrossRef Li C, Boban M, Snyder SA, Kobaku SP, Kwon G, Mehta G, et al. Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv Funct Mater. 2016;26(33):6121–31.CrossRef
131.
Zurück zum Zitat Sun Y, Kharaghani A, Tsotsas E. Micro-model experiments and pore network simulations of liquid imbibition in porous media. Chem Eng Sci. 2016;150:41–53.CrossRef Sun Y, Kharaghani A, Tsotsas E. Micro-model experiments and pore network simulations of liquid imbibition in porous media. Chem Eng Sci. 2016;150:41–53.CrossRef
132.
Zurück zum Zitat Jahanshahi-Anbuhi S, Henry A, Leung V, Sicard C, Pennings K, Pelton R, et al. Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab Chip. 2014;14(1):229–36.CrossRef Jahanshahi-Anbuhi S, Henry A, Leung V, Sicard C, Pennings K, Pelton R, et al. Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab Chip. 2014;14(1):229–36.CrossRef
133.
Zurück zum Zitat Jahanshahi-Anbuhi S, Chavan P, Sicard C, Leung V, Hossain SM, Pelton R, et al. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip. 2012;12(23):5079–85.CrossRef Jahanshahi-Anbuhi S, Chavan P, Sicard C, Leung V, Hossain SM, Pelton R, et al. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip. 2012;12(23):5079–85.CrossRef
134.
Zurück zum Zitat Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q, et al. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta. 2014;181(13–14):1565–72.CrossRef Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q, et al. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta. 2014;181(13–14):1565–72.CrossRef
135.
Zurück zum Zitat Lee J-H, Seo HS, Kwon J-H, Kim H-T, Kwon KC, Sim SJ, et al. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles. Biosens Bioelectron. 2015;69:213–25.CrossRef Lee J-H, Seo HS, Kwon J-H, Kim H-T, Kwon KC, Sim SJ, et al. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles. Biosens Bioelectron. 2015;69:213–25.CrossRef
136.
Zurück zum Zitat Zhang D, Li P, Liu W, Zhao L, Zhang Q, Zhang W, et al. Development of a detector-free semiquantitative immunochromatographic assay with major aflatoxins as target analytes. Sens Actuators B Chem. 2013;185:432–7.CrossRef Zhang D, Li P, Liu W, Zhao L, Zhang Q, Zhang W, et al. Development of a detector-free semiquantitative immunochromatographic assay with major aflatoxins as target analytes. Sens Actuators B Chem. 2013;185:432–7.CrossRef
137.
Zurück zum Zitat Zhang D, Li P, Zhang Q, Li R, Zhang W, Ding X, et al. A naked-eye based strategy for semiquantitative immunochromatographic assay. Anal Chim Acta. 2012;740:74–9.CrossRef Zhang D, Li P, Zhang Q, Li R, Zhang W, Ding X, et al. A naked-eye based strategy for semiquantitative immunochromatographic assay. Anal Chim Acta. 2012;740:74–9.CrossRef
138.
Zurück zum Zitat Fang Q, Wang L, Cheng Q, Cai J, Wang Y, Yang M, et al. A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples. Anal Chim Acta. 2015;881:82–9.CrossRef Fang Q, Wang L, Cheng Q, Cai J, Wang Y, Yang M, et al. A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples. Anal Chim Acta. 2015;881:82–9.CrossRef
139.
Zurück zum Zitat Oh YK, Joung HA, Han HS, Suk HJ, Kim MG. A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera. Biosens Bioelectron. 2014;61:285–9.CrossRef Oh YK, Joung HA, Han HS, Suk HJ, Kim MG. A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera. Biosens Bioelectron. 2014;61:285–9.CrossRef
140.
Zurück zum Zitat Chen A, Wang R, Bever CR, Xing S, Hammock BD, Pan T. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics. 2014;8(6):064101.CrossRef Chen A, Wang R, Bever CR, Xing S, Hammock BD, Pan T. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics. 2014;8(6):064101.CrossRef
141.
Zurück zum Zitat Li B, Li L, Guan A, Dong Q, Ruan K, Hu R, et al. A smartphone controlled handheld microfluidic liquid handling system. Lab Chip. 2014;14(20):4085–92.CrossRef Li B, Li L, Guan A, Dong Q, Ruan K, Hu R, et al. A smartphone controlled handheld microfluidic liquid handling system. Lab Chip. 2014;14(20):4085–92.CrossRef
142.
Zurück zum Zitat Vatsyayan P. Recent advances in the study of electrochemistry of redox proteins, Trends in Bioelectroanalysis bioanalytical reviews, vol. 6. Cham: Springer; 2016. p. 223–62. Vatsyayan P. Recent advances in the study of electrochemistry of redox proteins, Trends in Bioelectroanalysis bioanalytical reviews, vol. 6. Cham: Springer; 2016. p. 223–62.
143.
Zurück zum Zitat Zhang D, Liu Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron. 2016;75:273–84.CrossRef Zhang D, Liu Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron. 2016;75:273–84.CrossRef
144.
Zurück zum Zitat Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.CrossRef Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.CrossRef
145.
Zurück zum Zitat Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRef Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRef
146.
Zurück zum Zitat Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRef Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRef
147.
Zurück zum Zitat Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra29.CrossRef Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra29.CrossRef
148.
Zurück zum Zitat Thom NK, Yeung K, Pillion MB, Phillips ST. “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip. 2012;12(10):1768–70.CrossRef Thom NK, Yeung K, Pillion MB, Phillips ST. “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip. 2012;12(10):1768–70.CrossRef
149.
Zurück zum Zitat Thom NK, Lewis GG, DiTucci MJ, Phillips ST. Two general designs for fluidic batteries in paper-based microfluidic devices that provide predictable and tunable sources of power for on-chip assays. RSC Adv. 2013;3(19):6888–95.CrossRef Thom NK, Lewis GG, DiTucci MJ, Phillips ST. Two general designs for fluidic batteries in paper-based microfluidic devices that provide predictable and tunable sources of power for on-chip assays. RSC Adv. 2013;3(19):6888–95.CrossRef
150.
Zurück zum Zitat Liu H, Crooks RM. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem. 2012;84(5):2528–32.CrossRef Liu H, Crooks RM. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem. 2012;84(5):2528–32.CrossRef
151.
Zurück zum Zitat Dineva MA, Candotti D, Fletcher-Brown F, Allain JP, Lee H. Simultaneous visual detection of multiple viral amplicons by dipstick assay. J Clin Microbiol. 2005;43(8):4015–21.CrossRef Dineva MA, Candotti D, Fletcher-Brown F, Allain JP, Lee H. Simultaneous visual detection of multiple viral amplicons by dipstick assay. J Clin Microbiol. 2005;43(8):4015–21.CrossRef
152.
Zurück zum Zitat Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012;84(6):2883–91.CrossRef Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012;84(6):2883–91.CrossRef
153.
Zurück zum Zitat Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip. 2012;12(2):274–80.CrossRef Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip. 2012;12(2):274–80.CrossRef
154.
Zurück zum Zitat Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.CrossRef Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.CrossRef
155.
Zurück zum Zitat Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, et al. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens Bioelectron. 2011;26(11):4342–8.CrossRef Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, et al. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens Bioelectron. 2011;26(11):4342–8.CrossRef
156.
Zurück zum Zitat Vashist SK, Venkatesh AG, Mitsakakis K, Czilwik G, Roth G, von Stetten F, et al. Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. BioNanoSci. 2012;2(3):115–26.CrossRef Vashist SK, Venkatesh AG, Mitsakakis K, Czilwik G, Roth G, von Stetten F, et al. Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. BioNanoSci. 2012;2(3):115–26.CrossRef
157.
Zurück zum Zitat Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.CrossRef Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.CrossRef
Metadaten
Titel
Paper-Based Point-of-Care Immunoassays
verfasst von
Sandeep Kumar Vashist
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11416-9_5

Neuer Inhalt