Skip to main content
Erschienen in: TechTrends 2/2018

09.01.2018 | Original Paper

Paper Circuits: A Tangible, Low Threshold, Low Cost Entry to Computational Thinking

verfasst von: Victor R. Lee, Mimi Recker

Erschienen in: TechTrends | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose that paper circuitry provides a productive space for exploring aspects of computational thinking, an increasingly critical 21st century skills for all students. We argue that the creation and operation of paper circuits involve learning about computational concepts such as rule-based constraints, operations, and defined states. Moreover, paper circuitry materials are low cost, provide a low threshold to entry, and draw upon the familiarity that already exists with respect to paper as a hands-on and interactive medium. Paper circuitry thus provides multiple points of entry for students who are unfamiliar with computational thinking ideas while also supporting creative, artistic and crafting activities. It also provides an important alternative to the typically steep learning curve associated with learning a programming language. We define paper circuitry and associated technologies, show how they afford key dimensions of computational thinking, and present examples of paper circuit projects created by students.
Literatur
Zurück zum Zitat Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School students doing real computing without computers. Journal of Applied Computing and Information Technology, 13(1), 20–29. Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School students doing real computing without computers. Journal of Applied Computing and Information Technology, 13(1), 20–29.
Zurück zum Zitat di Sessa, A. A. (2000). Changing minds: Computers, learning, and literacy. The MIT Press. di Sessa, A. A. (2000). Changing minds: Computers, learning, and literacy. The MIT Press.
Zurück zum Zitat Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM, 51(8), 27.CrossRef Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM, 51(8), 27.CrossRef
Zurück zum Zitat Ito, M., Gutierrez, K., Livingstone, S., Penuel, B., Rhodes, J., Salen, K.,... Watkins, S. C. (2013). Connected learning: an agenda for research and design. Irvine: Digital Media and Learning Research Hub. Ito, M., Gutierrez, K., Livingstone, S., Penuel, B., Rhodes, J., Salen, K.,... Watkins, S. C. (2013). Connected learning: an agenda for research and design. Irvine: Digital Media and Learning Research Hub.
Zurück zum Zitat K-12 Computer Science Framework Steering Committee (2016). K-12 Computer Science Framework (p. 307). New York: ACM. K-12 Computer Science Framework Steering Committee (2016). K-12 Computer Science Framework (p. 307). New York: ACM.
Zurück zum Zitat Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A crafts-oriented approach to computing in high school: Introducing computational concepts, practices, and perspectives with electronic textiles. ACM Transactions on Computing Education (TOCE), 14(1), 1.CrossRef Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A crafts-oriented approach to computing in high school: Introducing computational concepts, practices, and perspectives with electronic textiles. ACM Transactions on Computing Education (TOCE), 14(1), 1.CrossRef
Zurück zum Zitat Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming. MIT Press. Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming. MIT Press.
Zurück zum Zitat Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83–137.CrossRef Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83–137.CrossRef
Zurück zum Zitat Lee, V. R., & Fields, D. A. (2017). A rubric for describing competences in the areas of circuitry, computation, and crafting after a course using e-textiles. International Journal of Information and Learning Technology, 34(5), 372–384. Lee, V. R., & Fields, D. A. (2017). A rubric for describing competences in the areas of circuitry, computation, and crafting after a course using e-textiles. International Journal of Information and Learning Technology, 34(5), 372–384.
Zurück zum Zitat Lee, V. R., Lewis, W., Searle, K. A., Recker, M., Hansen, J., & Phillips, A. L. (2017). Supporting interactive youth maker programs in public and school libraries: Design hypotheses and first implementations. In P. Blikstein, D. Abrahamson (Eds.), Proceedings of IDC 2017 (pp. 310–315). Stanford: ACM. Lee, V. R., Lewis, W., Searle, K. A., Recker, M., Hansen, J., & Phillips, A. L. (2017). Supporting interactive youth maker programs in public and school libraries: Design hypotheses and first implementations. In P. Blikstein, D. Abrahamson (Eds.), Proceedings of IDC 2017 (pp. 310–315). Stanford: ACM.
Zurück zum Zitat Papert, S. (1980). Mindstorms : children, computers, and powerful ideas. New York, NY, Basic Books Papert, S. (1980). Mindstorms : children, computers, and powerful ideas. New York, NY, Basic Books
Zurück zum Zitat Peppler, K. A. (2013). STEAM-powered computing education: Using e-textiles to integrate the arts and STEM. IEEE Computer, 46(9), 38–43.CrossRef Peppler, K. A. (2013). STEAM-powered computing education: Using e-textiles to integrate the arts and STEM. IEEE Computer, 46(9), 38–43.CrossRef
Zurück zum Zitat Phelps, D., Benner, J., Munsell, J., & de los Angeles, G. (2017). How K-5 students leverage computational practices and products to become expert Mancala players. Paper presented at the 2017 Annual Meeting of the Jean Piaget Society, San Francisco. Phelps, D., Benner, J., Munsell, J., & de los Angeles, G. (2017). How K-5 students leverage computational practices and products to become expert Mancala players. Paper presented at the 2017 Annual Meeting of the Jean Piaget Society, San Francisco.
Zurück zum Zitat Qi, J., & Buechley, L. (2010). Electronic popables: exploring paper-based computing through an interactive pop-up book. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, Cambridge. Qi, J., & Buechley, L. (2010). Electronic popables: exploring paper-based computing through an interactive pop-up book. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, Cambridge.
Zurück zum Zitat Qi, J., & Buechley, L. (2014). Sketching in circuits: designing and building electronics on paper. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems, Toronto, Ontario, Canada. Qi, J., & Buechley, L. (2014). Sketching in circuits: designing and building electronics on paper. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems, Toronto, Ontario, Canada.
Zurück zum Zitat Rich, P. J., & Hodges, C. B. (Eds.). (2017). Emerging research, practice, and policy on computational thinking. Cham: Springer International Publishing. Rich, P. J., & Hodges, C. B. (Eds.). (2017). Emerging research, practice, and policy on computational thinking. Cham: Springer International Publishing.
Zurück zum Zitat Shorter, M., Rogers, J., & McGhee, J. (2014). Enhancing everyday paper interactions with paper circuits. In Proceedings of the 2014 Conference on Designing interactive systems. Shorter, M., Rogers, J., & McGhee, J. (2014). Enhancing everyday paper interactions with paper circuits. In Proceedings of the 2014 Conference on Designing interactive systems.
Zurück zum Zitat Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.CrossRef Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.CrossRef
Zurück zum Zitat Williams, P. (2017). Paper Circuits. Ann Arbor: Cherry Lake Publishing. Williams, P. (2017). Paper Circuits. Ann Arbor: Cherry Lake Publishing.
Zurück zum Zitat Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.CrossRef Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.CrossRef
Metadaten
Titel
Paper Circuits: A Tangible, Low Threshold, Low Cost Entry to Computational Thinking
verfasst von
Victor R. Lee
Mimi Recker
Publikationsdatum
09.01.2018
Verlag
Springer US
Erschienen in
TechTrends / Ausgabe 2/2018
Print ISSN: 8756-3894
Elektronische ISSN: 1559-7075
DOI
https://doi.org/10.1007/s11528-017-0248-3

Weitere Artikel der Ausgabe 2/2018

TechTrends 2/2018 Zur Ausgabe