Skip to main content

2018 | OriginalPaper | Buchkapitel

Parallel Performance Analysis of Bacterial Biofilm Simulation Models

verfasst von : M. V. Sheraton, Peter M. A. Sloot

Erschienen in: Computational Science – ICCS 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modelling and simulation of bacterial biofilms is a computationally expensive process necessitating use of parallel computing. Fluid dynamics and advection-consumption models can be decoupled and solved to handle the fluid-solute-bacterial interactions. Data exchange between the two processes add up to the communication overheads. The heterogenous distribution of bacteria within the simulation domain further leads to non-uniform load distribution in the parallel system. We study the effect of load imbalance and communication overheads on the overall performance of simulation at different stages of biofilm growth. We develop a model to optimize the parallelization procedure for computing the growth dynamics of bacterial biofilms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dhatt, G., Lefrançois, E., Touzot, G.: Finite Element Method. Wiley, Hoboken (2012)CrossRef Dhatt, G., Lefrançois, E., Touzot, G.: Finite Element Method. Wiley, Hoboken (2012)CrossRef
2.
3.
Zurück zum Zitat Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Method. Pearson Education, New York City (2007) Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Method. Pearson Education, New York City (2007)
4.
Zurück zum Zitat Zhang, L., Wang, Z., Sagotsky, J.A., Deisboeck, T.S.: Multiscale agent-based cancer modeling. J. Math. Biol. 58, 545–559 (2009)MathSciNetCrossRef Zhang, L., Wang, Z., Sagotsky, J.A., Deisboeck, T.S.: Multiscale agent-based cancer modeling. J. Math. Biol. 58, 545–559 (2009)MathSciNetCrossRef
5.
Zurück zum Zitat Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K., Walker, D.W.: Solving Problems on Concurrent Processors: General Techniques and Regular Problems, vol. 1. Prentice-Hall, Inc., Upper Saddle River (1988) Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K., Walker, D.W.: Solving Problems on Concurrent Processors: General Techniques and Regular Problems, vol. 1. Prentice-Hall, Inc., Upper Saddle River (1988)
6.
Zurück zum Zitat Fozard, J.A., Lees, M., King, J.R., Logan, B.S.: Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 109, 105–114 (2012)CrossRef Fozard, J.A., Lees, M., King, J.R., Logan, B.S.: Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 109, 105–114 (2012)CrossRef
7.
Zurück zum Zitat Morgenroth, E., Wilderer, P.A.: Influence of detachment mechanisms on competition in biofilms. Water Res. 34, 417–426 (2000)CrossRef Morgenroth, E., Wilderer, P.A.: Influence of detachment mechanisms on competition in biofilms. Water Res. 34, 417–426 (2000)CrossRef
8.
Zurück zum Zitat Picioreanu, C., Van Loosdrecht, M.C., Heijnen, J.J.: Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotech. Bioeng. 72, 205–218 (2001)CrossRef Picioreanu, C., Van Loosdrecht, M.C., Heijnen, J.J.: Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotech. Bioeng. 72, 205–218 (2001)CrossRef
9.
Zurück zum Zitat Weitz, J.S., Hartman, H., Levin, S.A.: Coevolutionary arms races between bacteria and bacteriophage. Proc. Natl. Acad. Sci. U.S.A. 102, 9535–9540 (2005)CrossRef Weitz, J.S., Hartman, H., Levin, S.A.: Coevolutionary arms races between bacteria and bacteriophage. Proc. Natl. Acad. Sci. U.S.A. 102, 9535–9540 (2005)CrossRef
10.
Zurück zum Zitat Picioreanu, C., Vrouwenvelder, J., Van Loosdrecht, M.: Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. J. Membr. Sci. 345, 340–354 (2009)CrossRef Picioreanu, C., Vrouwenvelder, J., Van Loosdrecht, M.: Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. J. Membr. Sci. 345, 340–354 (2009)CrossRef
11.
Zurück zum Zitat Fagerlind, M.G., Webb, J.S., Barraud, N., McDougald, D., Jansson, A., Nilsson, P., Harlén, M., Kjelleberg, S., Rice, S.A.: Dynamic modelling of cell death during biofilm development. J. Theor. Biol. 295, 23–36 (2012)MathSciNetCrossRef Fagerlind, M.G., Webb, J.S., Barraud, N., McDougald, D., Jansson, A., Nilsson, P., Harlén, M., Kjelleberg, S., Rice, S.A.: Dynamic modelling of cell death during biofilm development. J. Theor. Biol. 295, 23–36 (2012)MathSciNetCrossRef
12.
Zurück zum Zitat Popławski, N.J., Shirinifard, A., Swat, M., Glazier, J.A.: Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell 3D modeling environment. Math. Biosci. Eng.: MBE 5, 355 (2008)MathSciNetCrossRef Popławski, N.J., Shirinifard, A., Swat, M., Glazier, J.A.: Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell 3D modeling environment. Math. Biosci. Eng.: MBE 5, 355 (2008)MathSciNetCrossRef
13.
Zurück zum Zitat Han, K., Levenspiel, O.: Extended monod kinetics for substrate, product, and cell inhibition. Biotech. Bioeng. 32, 430–447 (1988)CrossRef Han, K., Levenspiel, O.: Extended monod kinetics for substrate, product, and cell inhibition. Biotech. Bioeng. 32, 430–447 (1988)CrossRef
14.
Zurück zum Zitat Beyenal, H., Chen, S.N., Lewandowski, Z.: The double substrate growth kinetics of pseudomonas aeruginosa. Enzyme Microb. Technol. 32, 92–98 (2003)CrossRef Beyenal, H., Chen, S.N., Lewandowski, Z.: The double substrate growth kinetics of pseudomonas aeruginosa. Enzyme Microb. Technol. 32, 92–98 (2003)CrossRef
15.
Zurück zum Zitat Sternberg, C., Tolker-Nielsen, T.: Growing and analyzing biofilms in flow cells. Curr. Protoc. Microbiol. (1), 1B.2.1–1B.2.15 (2006) Sternberg, C., Tolker-Nielsen, T.: Growing and analyzing biofilms in flow cells. Curr. Protoc. Microbiol. (1), 1B.2.1–1B.2.15 (2006)
16.
Zurück zum Zitat Alowayyed, S., Závodszky, G., Azizi, V., Hoekstra, A.: Load balancing of parallel cell-based blood flow simulations. J. Comput. Sci. 24, 1–7 (2018)CrossRef Alowayyed, S., Závodszky, G., Azizi, V., Hoekstra, A.: Load balancing of parallel cell-based blood flow simulations. J. Comput. Sci. 24, 1–7 (2018)CrossRef
17.
Zurück zum Zitat Cytowski, M., Szymanska, Z.: Large-scale parallel simulations of 3d cell colony dynamics. Comput. Sci. Eng. 16, 86–95 (2014)CrossRef Cytowski, M., Szymanska, Z.: Large-scale parallel simulations of 3d cell colony dynamics. Comput. Sci. Eng. 16, 86–95 (2014)CrossRef
19.
Zurück zum Zitat Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3, 9–23 (2015) Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3, 9–23 (2015)
20.
Zurück zum Zitat Guermond, J.-L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRef Guermond, J.-L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRef
21.
Zurück zum Zitat Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. Journal Numer. Methods Eng. 79, 1309–1331 (2009)MathSciNetCrossRef Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. Journal Numer. Methods Eng. 79, 1309–1331 (2009)MathSciNetCrossRef
22.
Zurück zum Zitat Guyer, J.E., Wheeler, D., Warren, J.A.: FiPy: partial differential equations with python. Comput. Sci. Eng. 11, 6–15 (2009)CrossRef Guyer, J.E., Wheeler, D., Warren, J.A.: FiPy: partial differential equations with python. Comput. Sci. Eng. 11, 6–15 (2009)CrossRef
23.
Zurück zum Zitat Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T.: An overview of the trilinos project. ACM Trans. Math. Softw. (TOMS) 31, 397–423 (2005)MathSciNetCrossRef Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T.: An overview of the trilinos project. ACM Trans. Math. Softw. (TOMS) 31, 397–423 (2005)MathSciNetCrossRef
24.
Zurück zum Zitat Picioreanu, C., Kreft, J.-U., Klausen, M., Haagensen, J.A.J., Tolker-Nielsen, T., Molin, S.: Microbial motility involvement in biofilm structure formation–a 3D modelling study. Water Sci. Technol. 55, 337–343 (2007)CrossRef Picioreanu, C., Kreft, J.-U., Klausen, M., Haagensen, J.A.J., Tolker-Nielsen, T., Molin, S.: Microbial motility involvement in biofilm structure formation–a 3D modelling study. Water Sci. Technol. 55, 337–343 (2007)CrossRef
25.
Zurück zum Zitat Axner, L., Bernsdorf, J., Zeiser, T., Lammers, P., Linxweiler, J., Hoekstra, A.G.: Performance evaluation of a parallel sparse lattice Boltzmann solver. J. Comput. Phys. 227, 4895–4911 (2008)MathSciNetCrossRef Axner, L., Bernsdorf, J., Zeiser, T., Lammers, P., Linxweiler, J., Hoekstra, A.G.: Performance evaluation of a parallel sparse lattice Boltzmann solver. J. Comput. Phys. 227, 4895–4911 (2008)MathSciNetCrossRef
Metadaten
Titel
Parallel Performance Analysis of Bacterial Biofilm Simulation Models
verfasst von
M. V. Sheraton
Peter M. A. Sloot
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-93698-7_38