Skip to main content
Erschienen in: The Journal of Supercomputing 8/2019

28.01.2019

Parallel simulation model for heat and moisture transfer of clothed human body

verfasst von: Nan Jia, Yuan Huang, Jiapei Li, Haigang An, Xiaomin Jia, Ruomei Wang

Erschienen in: The Journal of Supercomputing | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The heat and moisture transfer performance in clothed human body affects human life quality (e.g., comfort and health) directly. Accurate modeling and highly efficient simulation of the heat and moisture transfer mechanisms in clothed human body is helpful to enhance the human life quality. In this paper, we first describe a heat and moisture transfer simulation model of clothed human body, which comprises the George Fu’s human thermal physiological model and a 3D heat and moisture transfer model in clothing, and the thermoregulation behaviors as well as the heat transfer mechanisms are taken into consideration. Then according to the physiological and geometrical features of human body, a parallel algorithm for the heat and moisture transfer simulation in clothed human body is proposed. The SPMD framework has been utilized for data parallel. At last, case studies with different environment scenes are presented. The visual simulated results are displayed, and the parallel performance is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu Q, Wang Z, Wang F, Li J (2018) Thermal comfort research on human CT data modeling. Multimed Tools Appl 77(5):6311–6326MathSciNetCrossRef Xu Q, Wang Z, Wang F, Li J (2018) Thermal comfort research on human CT data modeling. Multimed Tools Appl 77(5):6311–6326MathSciNetCrossRef
2.
Zurück zum Zitat Givoni B, Goldman RF (1972) Predicting rectal temperature response to work, environment, and clothing. J Appl Physiol 32(6):812–822CrossRef Givoni B, Goldman RF (1972) Predicting rectal temperature response to work, environment, and clothing. J Appl Physiol 32(6):812–822CrossRef
3.
Zurück zum Zitat Machle W, Hatch TF (1947) Heat: man’s exchanges and physiological responses. Physiol Rev 27(2):200–227CrossRef Machle W, Hatch TF (1947) Heat: man’s exchanges and physiological responses. Physiol Rev 27(2):200–227CrossRef
4.
Zurück zum Zitat McK Kerslake D, Waddell JL (1958) The heat exchanges of wet skin. J Physiol 141(1):156–163CrossRef McK Kerslake D, Waddell JL (1958) The heat exchanges of wet skin. J Physiol 141(1):156–163CrossRef
5.
Zurück zum Zitat Gagge AP (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–262 Gagge AP (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–262
6.
Zurück zum Zitat Gagge AP, Fobelets AP, Berglund L (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans (US) 92(CONF–8606125):709–731 Gagge AP, Fobelets AP, Berglund L (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans (US) 92(CONF–8606125):709–731
7.
Zurück zum Zitat Stolwijk JAJ, Hardy JD (1966) Temperature regulation in man—theoretical study. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 291(2):129–162CrossRef Stolwijk JAJ, Hardy JD (1966) Temperature regulation in man—theoretical study. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 291(2):129–162CrossRef
8.
Zurück zum Zitat Crosbie RJ, Hardy JD, Fessenden E (1961) Electrical analog simulation of temperature regulation in man. IRE Trans Bio-Med Electron 8(4):245–252CrossRef Crosbie RJ, Hardy JD, Fessenden E (1961) Electrical analog simulation of temperature regulation in man. IRE Trans Bio-Med Electron 8(4):245–252CrossRef
9.
Zurück zum Zitat Gordon RG (1974) The response of a human temperature regulatory system model in the cold. Ph.D. thesis, University of California, Santa Barbara Gordon RG (1974) The response of a human temperature regulatory system model in the cold. Ph.D. thesis, University of California, Santa Barbara
10.
Zurück zum Zitat Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65 mn) and radiation models and computational fluid dynamics (CFD). Energy Build 34(6):637–646CrossRef Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65 mn) and radiation models and computational fluid dynamics (CFD). Energy Build 34(6):637–646CrossRef
11.
Zurück zum Zitat Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36(6):691–699CrossRef Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36(6):691–699CrossRef
12.
Zurück zum Zitat Smith CE (1991) A transient, three-dimensional model of the human thermal system. Ph.D. thesis, Kansas State University Smith CE (1991) A transient, three-dimensional model of the human thermal system. Ph.D. thesis, Kansas State University
13.
Zurück zum Zitat Fu G (1995) A transient, 3-D mathematical thermal model for the clothed human. Ph.D. thesis, Kansas State University Fu G (1995) A transient, 3-D mathematical thermal model for the clothed human. Ph.D. thesis, Kansas State University
14.
Zurück zum Zitat Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46(4):371–384CrossRef Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46(4):371–384CrossRef
15.
Zurück zum Zitat Ferreira MS, Yanagihara JI (2009) A transient three-dimensional heat transfer model of the human body. Int Commun Heat Mass Transf 36(7):718–724CrossRef Ferreira MS, Yanagihara JI (2009) A transient three-dimensional heat transfer model of the human body. Int Commun Heat Mass Transf 36(7):718–724CrossRef
16.
Zurück zum Zitat Al-Othmani M, Ghaddar N, Ghali K (2008) A multi-segmented human bioheat model for transient and asymmetric radiative environments. Int J Heat Mass Transf 51(23):5522–5533CrossRefMATH Al-Othmani M, Ghaddar N, Ghali K (2008) A multi-segmented human bioheat model for transient and asymmetric radiative environments. Int J Heat Mass Transf 51(23):5522–5533CrossRefMATH
17.
Zurück zum Zitat Farnworth B (1983) Mechanisms of heat flow through clothing insulation. Text Res J 53(12):717–725CrossRef Farnworth B (1983) Mechanisms of heat flow through clothing insulation. Text Res J 53(12):717–725CrossRef
18.
Zurück zum Zitat Hsieh WH, Lu SF (2000) Heat-transfer analysis and thermal dispersion in thermally-developing region of a sintered porous metal channel. Int J Heat Mass Transf 43(16):3001–3011CrossRefMATH Hsieh WH, Lu SF (2000) Heat-transfer analysis and thermal dispersion in thermally-developing region of a sintered porous metal channel. Int J Heat Mass Transf 43(16):3001–3011CrossRefMATH
20.
Zurück zum Zitat Mohaqeqi M, Kargahi M (2015) Thermal analysis of stochastic dvfs-enabled multicore real-time systems. J Supercomput 71(12):4594–4622CrossRef Mohaqeqi M, Kargahi M (2015) Thermal analysis of stochastic dvfs-enabled multicore real-time systems. J Supercomput 71(12):4594–4622CrossRef
21.
Zurück zum Zitat Henry PSH, Pickard RH (1939) Diffusion in absorbing media. Proc R Soc Lond 171(945):215–241CrossRef Henry PSH, Pickard RH (1939) Diffusion in absorbing media. Proc R Soc Lond 171(945):215–241CrossRef
22.
Zurück zum Zitat Li Y, Holcombe BV (1992) A two-stage sorption model of the coupled diffusion of moisture and heat in wool fabrics. Text Res J 62(4):211–217CrossRef Li Y, Holcombe BV (1992) A two-stage sorption model of the coupled diffusion of moisture and heat in wool fabrics. Text Res J 62(4):211–217CrossRef
23.
Zurück zum Zitat Li Y, Luo ZX (2000) Physical mechanisms of moisture diffusion into hygroscopic fabrics during humidity transients. J Text Inst 91(2):302–316CrossRef Li Y, Luo ZX (2000) Physical mechanisms of moisture diffusion into hygroscopic fabrics during humidity transients. J Text Inst 91(2):302–316CrossRef
24.
Zurück zum Zitat Motakef S, El-Masri MA (1986) Simultaneous heat and mass transfer with phase change in a porous slab. Int J Heat Mass Transf 29(10):1503–1512CrossRef Motakef S, El-Masri MA (1986) Simultaneous heat and mass transfer with phase change in a porous slab. Int J Heat Mass Transf 29(10):1503–1512CrossRef
26.
Zurück zum Zitat Wang Z, Li Y, Zhu QY, Luo ZX (2003) Radiation and conduction heat transfer coupled with liquid water transfer, moisture sorption, and condensation in porous polymer materials. J Appl Polym Sci 89(10):2780–2790CrossRef Wang Z, Li Y, Zhu QY, Luo ZX (2003) Radiation and conduction heat transfer coupled with liquid water transfer, moisture sorption, and condensation in porous polymer materials. J Appl Polym Sci 89(10):2780–2790CrossRef
27.
Zurück zum Zitat Qingzhen X, Luo X (2006) Dynamic thermal comfort numerical simulation model on 3D garment cad. Appl Math Comput 182(1):106–118MathSciNetMATH Qingzhen X, Luo X (2006) Dynamic thermal comfort numerical simulation model on 3D garment cad. Appl Math Comput 182(1):106–118MathSciNetMATH
28.
Zurück zum Zitat Lin G, Meng S, Wang R, Luo X, Li Y (2011) The heat and moisture transfer balance theory of garment simulation. J Comput Appl Math 236(5):980–987MathSciNetCrossRefMATH Lin G, Meng S, Wang R, Luo X, Li Y (2011) The heat and moisture transfer balance theory of garment simulation. J Comput Appl Math 236(5):980–987MathSciNetCrossRefMATH
29.
Zurück zum Zitat Li F, Li Y, Wang Y (2013) A 3D finite element thermal model for clothed human body. J Fiber Bioeng Inform 6(2):149–160CrossRef Li F, Li Y, Wang Y (2013) A 3D finite element thermal model for clothed human body. J Fiber Bioeng Inform 6(2):149–160CrossRef
30.
Zurück zum Zitat Luo X, Qingzhen X (2006) Fourth-order algorithm for solving 2D transient heat and moisture transfer simulation through fabric. Appl Math Comput 182(2):1542–1555MathSciNetMATH Luo X, Qingzhen X (2006) Fourth-order algorithm for solving 2D transient heat and moisture transfer simulation through fabric. Appl Math Comput 182(2):1542–1555MathSciNetMATH
31.
Zurück zum Zitat Hang XD, Sun W, Ye C (2012) Finite volume solution of heat and moisture transfer through three-dimensional textile materials. Comput Fluids 57:25–39MathSciNetCrossRefMATH Hang XD, Sun W, Ye C (2012) Finite volume solution of heat and moisture transfer through three-dimensional textile materials. Comput Fluids 57:25–39MathSciNetCrossRefMATH
32.
Zurück zum Zitat Yi L, Aihua M, Ruomei W, Xiaonan L, Zhong W, Wenbang H, Liya Z, Yubei L (2006) P-smart—virtual system for clothing thermal functional design. Comput Aided Des 38(7):726–739CrossRef Yi L, Aihua M, Ruomei W, Xiaonan L, Zhong W, Wenbang H, Liya Z, Yubei L (2006) P-smart—virtual system for clothing thermal functional design. Comput Aided Des 38(7):726–739CrossRef
33.
Zurück zum Zitat Mao A, Luo J, Li Y, Luo X, Wang R (2011) A multi-disciplinary strategy for computer-aided clothing thermal engineering design. Comput Aided Des 43(12):1854–1869CrossRef Mao A, Luo J, Li Y, Luo X, Wang R (2011) A multi-disciplinary strategy for computer-aided clothing thermal engineering design. Comput Aided Des 43(12):1854–1869CrossRef
34.
Zurück zum Zitat Teng Y (2014) Multi-dimensional CAD system for clothing thermal functional design. Ph.D. thesis, The Hong Kong Polytechnic University Teng Y (2014) Multi-dimensional CAD system for clothing thermal functional design. Ph.D. thesis, The Hong Kong Polytechnic University
35.
Zurück zum Zitat Artés T, Cencerrado A, Cortés A, Margalef T (2015) Enhancing computational efficiency on forest fire forecasting by time-aware genetic algorithms. J Supercomput 71(5):1869–1881CrossRef Artés T, Cencerrado A, Cortés A, Margalef T (2015) Enhancing computational efficiency on forest fire forecasting by time-aware genetic algorithms. J Supercomput 71(5):1869–1881CrossRef
36.
Zurück zum Zitat Chaudhary V, Hase WL, Jiang H, Sun L, Thaker D (2004) Experiments with parallelizing tribology simulations. J Supercomput 28(3):323–343CrossRefMATH Chaudhary V, Hase WL, Jiang H, Sun L, Thaker D (2004) Experiments with parallelizing tribology simulations. J Supercomput 28(3):323–343CrossRefMATH
37.
Zurück zum Zitat Elmroth E, Ding C, Wu YS (2001) High performance computations for large scale simulations of subsurface multiphase fluid and heat flow. J Supercomput 18(3):235–258CrossRefMATH Elmroth E, Ding C, Wu YS (2001) High performance computations for large scale simulations of subsurface multiphase fluid and heat flow. J Supercomput 18(3):235–258CrossRefMATH
38.
Zurück zum Zitat Grunberg M, Genaud S, Mongenet C (2004) Seismic ray-tracing and earth mesh modeling on various parallel architectures. J Supercomput 29(1):27–44CrossRef Grunberg M, Genaud S, Mongenet C (2004) Seismic ray-tracing and earth mesh modeling on various parallel architectures. J Supercomput 29(1):27–44CrossRef
39.
Zurück zum Zitat Jin S, Dang G, Ling Y, Wang Z, Liu X (2001) Design and implementation of yh high performance distributed simulation system. J Comput Res Dev 4:009 Jin S, Dang G, Ling Y, Wang Z, Liu X (2001) Design and implementation of yh high performance distributed simulation system. J Comput Res Dev 4:009
40.
Zurück zum Zitat Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D et al (2013) Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–584CrossRef Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D et al (2013) Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–584CrossRef
42.
Zurück zum Zitat Bibo T (2012) Performance analysis and optimization of MPI collective operations on multi-core clusters. J Supercomput 60(1):141–162CrossRef Bibo T (2012) Performance analysis and optimization of MPI collective operations on multi-core clusters. J Supercomput 60(1):141–162CrossRef
Metadaten
Titel
Parallel simulation model for heat and moisture transfer of clothed human body
verfasst von
Nan Jia
Yuan Huang
Jiapei Li
Haigang An
Xiaomin Jia
Ruomei Wang
Publikationsdatum
28.01.2019
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 8/2019
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-019-02754-4

Weitere Artikel der Ausgabe 8/2019

The Journal of Supercomputing 8/2019 Zur Ausgabe