Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 4/2022

22.02.2022

Parameter Control Based Cuckoo Search Algorithm for Numerical Optimization

verfasst von: Jiatang Cheng, Yan Xiong

Erschienen in: Neural Processing Letters | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Cuckoo search (CS) algorithm is an efficient search technique for addressing numerical optimization problems. However, for the basic CS, the step size and mutation factor are sensitive to the optimization problems being solved. In view of this consideration, a new version namely the parameter control based CS (PCCS) algorithm is presented to strengthen the search accuracy and robustness. In this variant, the step size and mutation factor are dynamically updated according to the elite information stored in the historical archives at each generation, so as to realize the reasonable setting of these control parameters. For performance evaluation, numerical experiments are conducted on 25 benchmark functions from two different test suites. Moreover, the application in neural network optimization is also considered to further investigate the effectiveness. Experimental results indicate that the proposed PCCS algorithm is a promising and competitive method in terms of solution quality and convergence rate.
Literatur
1.
Zurück zum Zitat Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174 CrossRef Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174 CrossRef
2.
Zurück zum Zitat Kumar N, Shaikh AA, Mahato SK et al (2021) Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations. Exp Syst Appl. 172:114646 CrossRef Kumar N, Shaikh AA, Mahato SK et al (2021) Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations. Exp Syst Appl. 172:114646 CrossRef
3.
Zurück zum Zitat Nguyen TT, Nguyen TT, Vo DN (2018) An effective cuckoo search algorithm for large-scale combined heat and power economic dispatch problem. Neural Comput Appl. 30:3545–3564 CrossRef Nguyen TT, Nguyen TT, Vo DN (2018) An effective cuckoo search algorithm for large-scale combined heat and power economic dispatch problem. Neural Comput Appl. 30:3545–3564 CrossRef
4.
Zurück zum Zitat Yin L, Qiu JL, Gao SB (2018) Biclustering of gene expression data using cuckoo search and genetic algorithm. Int J Pattern Recognit Artif Intell 32(11):1850039 CrossRef Yin L, Qiu JL, Gao SB (2018) Biclustering of gene expression data using cuckoo search and genetic algorithm. Int J Pattern Recognit Artif Intell 32(11):1850039 CrossRef
5.
Zurück zum Zitat Cristin R, Kumar BS, Priya C et al (2020) Deep neural network based Rider-cuckoo search algorithm for plant disease detection. Artif Intell Rev. 53(2020):4993–5018 CrossRef Cristin R, Kumar BS, Priya C et al (2020) Deep neural network based Rider-cuckoo search algorithm for plant disease detection. Artif Intell Rev. 53(2020):4993–5018 CrossRef
6.
Zurück zum Zitat Cheng JT, Wang L, Xiong Y (2019) Cuckoo search algorithm with memory and the vibrant fault diagnosis for hydroelectric generating unit. Eng Comput 35(2):687–702 CrossRef Cheng JT, Wang L, Xiong Y (2019) Cuckoo search algorithm with memory and the vibrant fault diagnosis for hydroelectric generating unit. Eng Comput 35(2):687–702 CrossRef
7.
Zurück zum Zitat Chen L, Gan WY, Li HW et al (2021) Solving multi-objective optimization problem using cuckoo search algorithm based on decomposition. Appl Intell 51:143–160 CrossRef Chen L, Gan WY, Li HW et al (2021) Solving multi-objective optimization problem using cuckoo search algorithm based on decomposition. Appl Intell 51:143–160 CrossRef
8.
Zurück zum Zitat Rehman S, Ali SS, Khan SA (2018) Wind farm layout design using cuckoo search algorithms. Appl Artif Intell 32(9–10):956–978 CrossRef Rehman S, Ali SS, Khan SA (2018) Wind farm layout design using cuckoo search algorithms. Appl Artif Intell 32(9–10):956–978 CrossRef
9.
Zurück zum Zitat Ong P, Zainuddin Z (2019) Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction. Appl Soft Comput 80:374–386 CrossRef Ong P, Zainuddin Z (2019) Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction. Appl Soft Comput 80:374–386 CrossRef
10.
Zurück zum Zitat Civicioglu P, Besdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39:315–346 CrossRef Civicioglu P, Besdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39:315–346 CrossRef
11.
Zurück zum Zitat Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput. 1(1):67–82 CrossRef Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput. 1(1):67–82 CrossRef
12.
Zurück zum Zitat Mlakar U, Fister I Jr, Fister I (2016) Hybrid self-adaptive cuckoo search for global optimization. Swarm Evolut Comput 29:47–72 CrossRef Mlakar U, Fister I Jr, Fister I (2016) Hybrid self-adaptive cuckoo search for global optimization. Swarm Evolut Comput 29:47–72 CrossRef
13.
Zurück zum Zitat Wu ZQ, Du CQ (2019) The parameter identification of PMSM based on improved cuckoo algorithm. Neural Process Lett 50:2701–2715 CrossRef Wu ZQ, Du CQ (2019) The parameter identification of PMSM based on improved cuckoo algorithm. Neural Process Lett 50:2701–2715 CrossRef
14.
Zurück zum Zitat Valian E, Tavakoli S, Mohanna S (2013) Improved cuckoo search for reliability optimization problems. Comput Ind Eng 64:459–468 CrossRef Valian E, Tavakoli S, Mohanna S (2013) Improved cuckoo search for reliability optimization problems. Comput Ind Eng 64:459–468 CrossRef
15.
Zurück zum Zitat Bulatović RR, Bošković G, Savković MM et al (2014) Improved Cuckoo search (ICS) algorthm for constrained optimization problems. Latin Am J Solids Struct 8(11):1349–1362 CrossRef Bulatović RR, Bošković G, Savković MM et al (2014) Improved Cuckoo search (ICS) algorthm for constrained optimization problems. Latin Am J Solids Struct 8(11):1349–1362 CrossRef
16.
Zurück zum Zitat Dhabal S, Venkateswaran P (2017) An efficient gbest-guided Cuckoo search algorithm for higher order two channel filter bank design. Swarm Evol Comput 33:68–84 CrossRef Dhabal S, Venkateswaran P (2017) An efficient gbest-guided Cuckoo search algorithm for higher order two channel filter bank design. Swarm Evol Comput 33:68–84 CrossRef
17.
Zurück zum Zitat Thirugnanasambandam K, Prakash S, Subramanian V et al (2019) Reinforced cuckoo search algorithm-based multimodal optimization. Appl Intell 49:2059–2083 CrossRef Thirugnanasambandam K, Prakash S, Subramanian V et al (2019) Reinforced cuckoo search algorithm-based multimodal optimization. Appl Intell 49:2059–2083 CrossRef
18.
Zurück zum Zitat Wei JM, Yu YG (2020) A novel cuckoo search algorithm under adaptive parameter control for global numerical optimization. Soft Comput 24:4917–4940 CrossRef Wei JM, Yu YG (2020) A novel cuckoo search algorithm under adaptive parameter control for global numerical optimization. Soft Comput 24:4917–4940 CrossRef
19.
Zurück zum Zitat Cheng JT, Wang L, Xiong Y (2019) Ensemble of cuckoo search variants. Comput Ind Eng 135:299–313 CrossRef Cheng JT, Wang L, Xiong Y (2019) Ensemble of cuckoo search variants. Comput Ind Eng 135:299–313 CrossRef
20.
Zurück zum Zitat Dasgupta S, Das S, Biswas A et al (2009) On stability and convergence of the population-dynamics in differential evolution. AI Commun 22:1–20 MathSciNetCrossRef Dasgupta S, Das S, Biswas A et al (2009) On stability and convergence of the population-dynamics in differential evolution. AI Commun 22:1–20 MathSciNetCrossRef
21.
Zurück zum Zitat Zhang JQ, Sanderson AC (2009) JADE Adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958 CrossRef Zhang JQ, Sanderson AC (2009) JADE Adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958 CrossRef
22.
Zurück zum Zitat Suganthan PN, Hansen N, Liang JJ, et al, (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical Report Suganthan PN, Hansen N, Liang JJ, et al, (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical Report
23.
Zurück zum Zitat Sarangi SK, Panda R, Das PK et al (2018) Design of optimal high pass and band stop FIR filters using adaptive Cuckoo search algorithm. Eng Appl Artif Intell 70:67–80 CrossRef Sarangi SK, Panda R, Das PK et al (2018) Design of optimal high pass and band stop FIR filters using adaptive Cuckoo search algorithm. Eng Appl Artif Intell 70:67–80 CrossRef
24.
Zurück zum Zitat Lin YH, Liang Z, Hu HP (2016) Cuckoo search algorithm with beta distribution. J Nanjing Univ (Natural Sciences) 52(4):638–646 ( (in Chinese)) MATH Lin YH, Liang Z, Hu HP (2016) Cuckoo search algorithm with beta distribution. J Nanjing Univ (Natural Sciences) 52(4):638–646 ( (in Chinese)) MATH
25.
Zurück zum Zitat Zhang YW, Wang L, Wu QD (2014) Dynamic adaptation cuckoo search algorithm. Control and Decis 29(4):617–622 ( (in Chinese)) MATH Zhang YW, Wang L, Wu QD (2014) Dynamic adaptation cuckoo search algorithm. Control and Decis 29(4):617–622 ( (in Chinese)) MATH
26.
Zurück zum Zitat Wang LJ, Yin YL, Zhong YW (2015) Cuckoo search with varied scaling factor. Front Comp Sci 9(4):623–635 CrossRef Wang LJ, Yin YL, Zhong YW (2015) Cuckoo search with varied scaling factor. Front Comp Sci 9(4):623–635 CrossRef
27.
Zurück zum Zitat Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359 MathSciNetCrossRef Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359 MathSciNetCrossRef
28.
Zurück zum Zitat Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248 CrossRef Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248 CrossRef
29.
Zurück zum Zitat Kennedy J, Eberhart R(1995) Particle swarm optimization. In: IEEE international conference on neural networks, pp. 1942–1948 Kennedy J, Eberhart R(1995) Particle swarm optimization. In: IEEE international conference on neural networks, pp. 1942–1948
30.
Zurück zum Zitat Rao RV, Savsani VJ, Vakharia DP (2012) Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15 MathSciNetCrossRef Rao RV, Savsani VJ, Vakharia DP (2012) Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15 MathSciNetCrossRef
31.
Zurück zum Zitat Anita AY (2019) AEFA: artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108 CrossRef Anita AY (2019) AEFA: artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108 CrossRef
32.
Zurück zum Zitat Gori M, Tesi A (1992) On the problem of local minima in backpropagation. IEEE Trans Pattern Anal Mach Intell 14(1):76–86 CrossRef Gori M, Tesi A (1992) On the problem of local minima in backpropagation. IEEE Trans Pattern Anal Mach Intell 14(1):76–86 CrossRef
33.
Zurück zum Zitat Wang L, Zou F, Hei XH et al (2014) An improved teaching-learning-based optimization with neighborhood search for applications of ANN. Neurocomputing 143:231–247 CrossRef Wang L, Zou F, Hei XH et al (2014) An improved teaching-learning-based optimization with neighborhood search for applications of ANN. Neurocomputing 143:231–247 CrossRef
34.
Zurück zum Zitat Subudhi B, Jena D (2008) Differential evolution and Levenberg Marquardt trained neural network scheme for nonlinear system identification. Neural Process Lett 27:285–296 CrossRef Subudhi B, Jena D (2008) Differential evolution and Levenberg Marquardt trained neural network scheme for nonlinear system identification. Neural Process Lett 27:285–296 CrossRef
35.
Zurück zum Zitat Dang TL, Hoshino Y (2019) Hardware/software co-design for a neural network trained by particle swarm optimization algorithm. Neural Process Lett 49:481–505 CrossRef Dang TL, Hoshino Y (2019) Hardware/software co-design for a neural network trained by particle swarm optimization algorithm. Neural Process Lett 49:481–505 CrossRef
36.
Zurück zum Zitat Najimi M, Ghafoori N, Nikoo M (2019) Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm. J Build Eng 22:216–226 CrossRef Najimi M, Ghafoori N, Nikoo M (2019) Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm. J Build Eng 22:216–226 CrossRef
Metadaten
Titel
Parameter Control Based Cuckoo Search Algorithm for Numerical Optimization
verfasst von
Jiatang Cheng
Yan Xiong
Publikationsdatum
22.02.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 4/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10758-0

Weitere Artikel der Ausgabe 4/2022

Neural Processing Letters 4/2022 Zur Ausgabe