Skip to main content
Erschienen in:

30.01.2024

Parameter Estimation for Geometric Lévy Processes with Constant Volatility

verfasst von: Sher Chhetri, Hongwei Long, Cory Ball

Erschienen in: Annals of Data Science | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Aluffi-Pentini F, Parisi V, Zirilli F (1985) Global optimization and stochastic differential equations. J Optim Theory Appl 47:1–16 Aluffi-Pentini F, Parisi V, Zirilli F (1985) Global optimization and stochastic differential equations. J Optim Theory Appl 47:1–16
2.
Zurück zum Zitat Leander J, Lundh T, Jirstrand M (2014) Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete-time measurements. Math Biosci 251:54–62 Leander J, Lundh T, Jirstrand M (2014) Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete-time measurements. Math Biosci 251:54–62
3.
Zurück zum Zitat Ombach J (2007) A proof of convergence of general stochastic search for global minimum. J Differ Equ Appl 13(8–9):795–802 Ombach J (2007) A proof of convergence of general stochastic search for global minimum. J Differ Equ Appl 13(8–9):795–802
4.
Zurück zum Zitat Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
5.
Zurück zum Zitat Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin
6.
Zurück zum Zitat Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, Singapore Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, Singapore
7.
Zurück zum Zitat Davis W (2023) Reconstruction of stochastic dynamics from large streamed datasets. Phys Rev E 108:054110 Davis W (2023) Reconstruction of stochastic dynamics from large streamed datasets. Phys Rev E 108:054110
8.
Zurück zum Zitat Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178 Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178
9.
Zurück zum Zitat Cheng J (2022) Financial data analysis and application based on big data mining technology. Comput Intell Neurosci: 6711470 Cheng J (2022) Financial data analysis and application based on big data mining technology. Comput Intell Neurosci: 6711470
10.
Zurück zum Zitat Crovella M, Taqqu M, Bestavros A (1998) Heavy-tailed probability distributions in the world wide web. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails: statistical techniques and applications. Chapman and Hall, New York, pp 3–26 Crovella M, Taqqu M, Bestavros A (1998) Heavy-tailed probability distributions in the world wide web. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails: statistical techniques and applications. Chapman and Hall, New York, pp 3–26
11.
Zurück zum Zitat Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654 Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654
12.
Zurück zum Zitat Mandelbrot B (1963) The variation of certain speculative prices. J Bus 38:349–419 Mandelbrot B (1963) The variation of certain speculative prices. J Bus 38:349–419
13.
Zurück zum Zitat Fama E (1965) The behavior of stock market prices. J Bus 38:34–105 Fama E (1965) The behavior of stock market prices. J Bus 38:34–105
14.
Zurück zum Zitat Schoutens W (2003) Lévy processes in finance: pricing financial derivatives. Wiley, Hoboken Schoutens W (2003) Lévy processes in finance: pricing financial derivatives. Wiley, Hoboken
15.
Zurück zum Zitat Kyprianou A, Schoutens W, Wilmott P (2005) Exotic option pricing and advancedLévy models. Wiley, Chichester Kyprianou A, Schoutens W, Wilmott P (2005) Exotic option pricing and advancedLévy models. Wiley, Chichester
16.
Zurück zum Zitat Ditlevsen P (1999) Anomalous jumping in a double-well potential. Phys Rev E 60:172–179 Ditlevsen P (1999) Anomalous jumping in a double-well potential. Phys Rev E 60:172–179
17.
Zurück zum Zitat Ditlevsen P (1999) Observation of alpha-stable noise induced millennial climate changes from an ice-core record. Geophys Res Lett 26:1441–1444 Ditlevsen P (1999) Observation of alpha-stable noise induced millennial climate changes from an ice-core record. Geophys Res Lett 26:1441–1444
18.
Zurück zum Zitat Schertzer D, Larcheveque M, Duan J, Yanovsky V, Lovejoy S (2001) Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-gaussian Lévy stable noises. J Math Phys 42:200–212 Schertzer D, Larcheveque M, Duan J, Yanovsky V, Lovejoy S (2001) Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-gaussian Lévy stable noises. J Math Phys 42:200–212
19.
Zurück zum Zitat Ilow J, Hatzinakos D (1998) Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers. IEEE Trans Sign Process 46(6):1601–1611 Ilow J, Hatzinakos D (1998) Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers. IEEE Trans Sign Process 46(6):1601–1611
20.
Zurück zum Zitat Nikias CL, Shao M (1995) Signal processing with alpha-stable distributions and applications. Wiley, New York Nikias CL, Shao M (1995) Signal processing with alpha-stable distributions and applications. Wiley, New York
21.
Zurück zum Zitat Mikosch T, Resnick S, Rootzen H, Stegeman A (2002) Is network traffic approximated stable Lévy motion or fractional Brownian motion? Ann Appl Probab 12:23–68 Mikosch T, Resnick S, Rootzen H, Stegeman A (2002) Is network traffic approximated stable Lévy motion or fractional Brownian motion? Ann Appl Probab 12:23–68
22.
Zurück zum Zitat Zhou Y, Li R, Zhao Z, Zhou X, Zhang H (2015) On the alpha-stable distribution of base stations in cellular networks. IEEE Commun Lett 19(10):1750–1753 Zhou Y, Li R, Zhao Z, Zhou X, Zhang H (2015) On the alpha-stable distribution of base stations in cellular networks. IEEE Commun Lett 19(10):1750–1753
23.
Zurück zum Zitat Merton RC (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3:125–144 Merton RC (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3:125–144
24.
Zurück zum Zitat Liptser RS, Shiryaev AN (2001) Statistics of random processes II: applications, vol 2. Springer-Verlag, Berlin Heidelberg Liptser RS, Shiryaev AN (2001) Statistics of random processes II: applications, vol 2. Springer-Verlag, Berlin Heidelberg
25.
Zurück zum Zitat Breton AL (1976) On continuous and discrete sampling for parameter estimation in diffusion type processes. Math Program Stud 5:124–144 Breton AL (1976) On continuous and discrete sampling for parameter estimation in diffusion type processes. Math Program Stud 5:124–144
26.
Zurück zum Zitat Dorogovcev A (1976) The consistency of an estimate of a parameter of a stochastic differential equation. Math Statist 10:73–82 Dorogovcev A (1976) The consistency of an estimate of a parameter of a stochastic differential equation. Math Statist 10:73–82
27.
Zurück zum Zitat Kasonga R (1988) The consistency of a nonlinear least squares estimator for diffusion processes. Stoch Process Appl 30:263–275 Kasonga R (1988) The consistency of a nonlinear least squares estimator for diffusion processes. Stoch Process Appl 30:263–275
28.
Zurück zum Zitat Hu Y, Long H (2007) Parameter estimation for Ornstein–Uhlenbeck processes driven by alpha-stable Lévy motions. Commun Stoch Anal 1:175–192 Hu Y, Long H (2007) Parameter estimation for Ornstein–Uhlenbeck processes driven by alpha-stable Lévy motions. Commun Stoch Anal 1:175–192
29.
Zurück zum Zitat Hu Y, Long H (2009) Least squares estimator for Ornstein–Uhlenbeck processes driven by alpha-stable stochastic process. Stoch Process Appl 119(2):2465–2480 Hu Y, Long H (2009) Least squares estimator for Ornstein–Uhlenbeck processes driven by alpha-stable stochastic process. Stoch Process Appl 119(2):2465–2480
30.
Zurück zum Zitat Shimizu Y, Yoshida N (2006) Estimation of parameters for diffusion processes with jumps from discrete observations. Stat Inference Stoch Process 9:227–277 Shimizu Y, Yoshida N (2006) Estimation of parameters for diffusion processes with jumps from discrete observations. Stat Inference Stoch Process 9:227–277
31.
Zurück zum Zitat Long H, Ma C, Shimizu Y (2017) Least squares estimators for stochastic differential equations driven by small Lévy noise. Stoch Process Appl 127:1475–1495 Long H, Ma C, Shimizu Y (2017) Least squares estimators for stochastic differential equations driven by small Lévy noise. Stoch Process Appl 127:1475–1495
32.
Zurück zum Zitat Long H, Shimizu Y, Sun W (2013) Least squares estimators for discretely observed stochastic processes driven by small Lévy noises. J Multivar Anal 116:422–439 Long H, Shimizu Y, Sun W (2013) Least squares estimators for discretely observed stochastic processes driven by small Lévy noises. J Multivar Anal 116:422–439
33.
Zurück zum Zitat Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1):223–262 Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1):223–262
34.
Zurück zum Zitat Belovas I, Kabasinskas A, Sakalauskas L (2006) A study of stable models of stock markets. Inf Technol Contr 35(1):34–56 Belovas I, Kabasinskas A, Sakalauskas L (2006) A study of stable models of stock markets. Inf Technol Contr 35(1):34–56
35.
Zurück zum Zitat Fama E, Roll R (1971) Parameter estimates for symmetric stable distributions. J Am Stat Assoc 66:331–338 Fama E, Roll R (1971) Parameter estimates for symmetric stable distributions. J Am Stat Assoc 66:331–338
36.
Zurück zum Zitat Koutrouvelis I (1981) An iterative procedure for the estimation of the parameters of stable laws. Commun Stat Simul Comput 10:17–28 Koutrouvelis I (1981) An iterative procedure for the estimation of the parameters of stable laws. Commun Stat Simul Comput 10:17–28
37.
Zurück zum Zitat Mittnik S, Rachev S, Doganoglu T, Chenyao D (1999) Maximum likelihood estimation of stable Paretian models. Math Comput Model 29:275–293 Mittnik S, Rachev S, Doganoglu T, Chenyao D (1999) Maximum likelihood estimation of stable Paretian models. Math Comput Model 29:275–293
38.
Zurück zum Zitat Press J (1972) Estimation in univariate and multivariate stable distributions. J Am Stat Assoc 67:842–846 Press J (1972) Estimation in univariate and multivariate stable distributions. J Am Stat Assoc 67:842–846
39.
Zurück zum Zitat Zolotarev, VM (1986) One-dimensional stable distributions. In: Translations of mathematical monographs, vol. 65. American Mathematical Society, Providence, Rhode Island Zolotarev, VM (1986) One-dimensional stable distributions. In: Translations of mathematical monographs, vol. 65. American Mathematical Society, Providence, Rhode Island
40.
Zurück zum Zitat McCulloch JH (1986) Simple consistent estimators of stable distribution parameters. Commun Stat: Simulat Comput 15(4):1109–1136 McCulloch JH (1986) Simple consistent estimators of stable distribution parameters. Commun Stat: Simulat Comput 15(4):1109–1136
41.
Zurück zum Zitat DuMouchel WH (1973) On the asymptotic normality of the maximum likelihood estimator when sampling from a stable distribution. Ann Stat 1:948–957 DuMouchel WH (1973) On the asymptotic normality of the maximum likelihood estimator when sampling from a stable distribution. Ann Stat 1:948–957
42.
Zurück zum Zitat DuMouchel WH (1973) Stable distributions in statistical inference I. Symmetric stable distributions compared to other symmetric long-tailed distributions. J Amer Statist Assoc 68:469–477 DuMouchel WH (1973) Stable distributions in statistical inference I. Symmetric stable distributions compared to other symmetric long-tailed distributions. J Amer Statist Assoc 68:469–477
43.
Zurück zum Zitat DuMouchel WH (1975) Stable distributions in statistical inference II. Information from stably distributed samples. J Amer Statist Assoc 70:386–393 DuMouchel WH (1975) Stable distributions in statistical inference II. Information from stably distributed samples. J Amer Statist Assoc 70:386–393
44.
Zurück zum Zitat Nolan JP (2001) Maximum likelihood estimation and diagnostics for stable distributions. In: Barndorff-Nielsen OE, Mikosch T, Resnick S (eds) Lévy processes. Birkhaeuser, Boston, pp 331–338 Nolan JP (2001) Maximum likelihood estimation and diagnostics for stable distributions. In: Barndorff-Nielsen OE, Mikosch T, Resnick S (eds) Lévy processes. Birkhaeuser, Boston, pp 331–338
45.
Zurück zum Zitat Heathcote CR (1977) The integrated squared error estimation of parameters. Biometrika 64:255–264 Heathcote CR (1977) The integrated squared error estimation of parameters. Biometrika 64:255–264
46.
Zurück zum Zitat Paulson AS, Holcomb EW, Leitch RA (1975) The estimation of the parameters of the stable laws. Biometrika 62:163–170 Paulson AS, Holcomb EW, Leitch RA (1975) The estimation of the parameters of the stable laws. Biometrika 62:163–170
47.
Zurück zum Zitat Koutrouvelis I (1980) Regression-type estimation of the parameters of stable laws. J Am Stat Assoc 69:108–113 Koutrouvelis I (1980) Regression-type estimation of the parameters of stable laws. J Am Stat Assoc 69:108–113
48.
Zurück zum Zitat Feuerverger A, McDunnough P (1981) On the efficiency of empirical characteristic functions procedures. J Roy Stat Soc Ser B 43:20–27 Feuerverger A, McDunnough P (1981) On the efficiency of empirical characteristic functions procedures. J Roy Stat Soc Ser B 43:20–27
49.
Zurück zum Zitat Marohn F (1999) Estimating the index of a stable law via the pot-method. Statist Probab Lett 41:413–423 Marohn F (1999) Estimating the index of a stable law via the pot-method. Statist Probab Lett 41:413–423
50.
Zurück zum Zitat Tsihrintzis GA, Nikias CL (1996) Fast estimation of the parameters of alpha-stable impulsive interference. IEEE Trans Sign Process 44(6):1492–1503 Tsihrintzis GA, Nikias CL (1996) Fast estimation of the parameters of alpha-stable impulsive interference. IEEE Trans Sign Process 44(6):1492–1503
51.
Zurück zum Zitat Nolan JP (2018) Stable distributions: models for heavy tailed data. Birkhauser, Boston Nolan JP (2018) Stable distributions: models for heavy tailed data. Birkhauser, Boston
52.
Zurück zum Zitat Rachev S (2003) Handbook of heavy tailed distributions in finance. Handbooks in finance. Elsevier Science, North Holland Rachev S (2003) Handbook of heavy tailed distributions in finance. Handbooks in finance. Elsevier Science, North Holland
53.
Zurück zum Zitat Uchaikin VV, Zolotarev VM (1999) Chance and stability: stable distributions and their applications. De Gruyter, Berlin, Boston Uchaikin VV, Zolotarev VM (1999) Chance and stability: stable distributions and their applications. De Gruyter, Berlin, Boston
54.
Zurück zum Zitat Akgiray V, Lamoureux CG (1989) Estimation of stable laws parameters: a comparative study. J Bus Econ Statist 7:85–93 Akgiray V, Lamoureux CG (1989) Estimation of stable laws parameters: a comparative study. J Bus Econ Statist 7:85–93
55.
Zurück zum Zitat Besbeas P, Morgan BJT (2008) Improved estimation of the stable laws. Stat Comput 18:219–231 Besbeas P, Morgan BJT (2008) Improved estimation of the stable laws. Stat Comput 18:219–231
56.
Zurück zum Zitat Höpfner R, Rüschendorf L (1999) Comparison of estimators in stable models. Math Comput Model 29:145–160 Höpfner R, Rüschendorf L (1999) Comparison of estimators in stable models. Math Comput Model 29:145–160
57.
Zurück zum Zitat Woerner J (2001) Statistical analysis for discretely observed Lévy processes. Dissertation, University of Freiburg Woerner J (2001) Statistical analysis for discretely observed Lévy processes. Dissertation, University of Freiburg
58.
Zurück zum Zitat Aït-Sahalia Y, Jacod J (2007) Volatility estimators for discretely sampled Lévy processes. Ann Stat 35(1):355–392 Aït-Sahalia Y, Jacod J (2007) Volatility estimators for discretely sampled Lévy processes. Ann Stat 35(1):355–392
59.
Zurück zum Zitat Masuda H (2009) Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J Japan Statist Soc 39:49–75 Masuda H (2009) Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J Japan Statist Soc 39:49–75
60.
Zurück zum Zitat Masuda H (2015) Parameter estimation of Lévy processes. In: Lévy Matters IV. Lecture Notes in Mathematics, vol 2128, pp 179-286 Masuda H (2015) Parameter estimation of Lévy processes. In: Lévy Matters IV. Lecture Notes in Mathematics, vol 2128, pp 179-286
61.
Zurück zum Zitat Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman and Hall, CRC Financial Mathematics Series Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman and Hall, CRC Financial Mathematics Series
62.
Zurück zum Zitat Cheng Y, Hu Y, Long H (2020) The generalized moment estimators for alpha-stable Ornstein–Uhlenbeck motions form discrete observations. Stat Infer Stoch Process 23(1):53–81 Cheng Y, Hu Y, Long H (2020) The generalized moment estimators for alpha-stable Ornstein–Uhlenbeck motions form discrete observations. Stat Infer Stoch Process 23(1):53–81
63.
Zurück zum Zitat Billingsley P (1995) Probability and measures, 3rd edn. Wiley, New York Billingsley P (1995) Probability and measures, 3rd edn. Wiley, New York
64.
Zurück zum Zitat Kanter M (1975) Stable densities under change of scale and total variation inequalities. Ann Probab 3(4):697–707 Kanter M (1975) Stable densities under change of scale and total variation inequalities. Ann Probab 3(4):697–707
65.
Zurück zum Zitat Chambers JM, Mallows CL, Stuck BW (1976) A method for simulating stable random variables. J Amer Statist Assoc 71(354):340–344 Chambers JM, Mallows CL, Stuck BW (1976) A method for simulating stable random variables. J Amer Statist Assoc 71(354):340–344
66.
Zurück zum Zitat Janicki A, Weron A (1994) Simulation and chaotic behavior of alpha-stable stochastic processes. Marcel Dekker, New York Janicki A, Weron A (1994) Simulation and chaotic behavior of alpha-stable stochastic processes. Marcel Dekker, New York
67.
Zurück zum Zitat Weron A, Weron R (1995) Computer simulation of Lévy -stable variables and processes. In: Chaos—interplay between stochastic and deterministic behaviour. Lectures Notes in Phys. vol 457. Springer, Berlin, pp 379–392 Weron A, Weron R (1995) Computer simulation of Lévy -stable variables and processes. In: Chaos—interplay between stochastic and deterministic behaviour. Lectures Notes in Phys. vol 457. Springer, Berlin, pp 379–392
68.
Zurück zum Zitat Bielinskyi A, Semerikov S, Solovieva V, Soloviev V (2019) Lévy’s stable distribution for stock crash detecting. SHS Web of Conf 65:06006 Bielinskyi A, Semerikov S, Solovieva V, Soloviev V (2019) Lévy’s stable distribution for stock crash detecting. SHS Web of Conf 65:06006
71.
Zurück zum Zitat Knight JL, Satchel SE (1997) The cumulant generating function estimation method: implementation and asymptotic efficiency. Economet Theor 13(2):17–184 Knight JL, Satchel SE (1997) The cumulant generating function estimation method: implementation and asymptotic efficiency. Economet Theor 13(2):17–184
72.
Zurück zum Zitat Kogon SM, Williams DB (1998) Characteristic function-based estimation of stable distribution parameter. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails. Birkhauser Basel, Boston, pp 311–335 Kogon SM, Williams DB (1998) Characteristic function-based estimation of stable distribution parameter. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails. Birkhauser Basel, Boston, pp 311–335
73.
Zurück zum Zitat Krutto A (2018) Empirical cumulant function based parameter estimation in stable laws. Acta Comm Univ Tart Math 22(2):311–338 Krutto A (2018) Empirical cumulant function based parameter estimation in stable laws. Acta Comm Univ Tart Math 22(2):311–338
74.
Zurück zum Zitat White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50(1):1–25 White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50(1):1–25
75.
Zurück zum Zitat Matsui M, Takemura A (2008) Goodness-of-fit tests for symmetric stable distributions-empirical characteristic function approach. TEST 17:546–566 Matsui M, Takemura A (2008) Goodness-of-fit tests for symmetric stable distributions-empirical characteristic function approach. TEST 17:546–566
Metadaten
Titel
Parameter Estimation for Geometric Lévy Processes with Constant Volatility
verfasst von
Sher Chhetri
Hongwei Long
Cory Ball
Publikationsdatum
30.01.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 1/2025
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00513-8