Skip to main content
Erschienen in: Cellulose 12/2018

28.09.2018 | Original Paper

Parameters of hydrothermal gelation of chitin nanofibers determined using a severity factor

verfasst von: Shin Suenaga, Mitsumasa Osada

Erschienen in: Cellulose | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hydrothermal gelation of α- and β-chitin nanofibers (α- and β-ChNFs) prepared at neutral and acidic pH was conducted by heating them to 120, 160, 180, and 200 °C in a sealed reactor. The optical transmittance and mechanical strength of β-ChNFs gelated at the acidic pH were determined for the first time using a severity factor defined as a function of the integrated heating time and temperature. The width of β-ChNFs increased after the hydrothermal treatment, indicating that these fibers strongly adhered to each other to form a network structure during gelation. Furthermore, the hydrothermal gelation of α- and β-ChNFs with different degrees of disintegration prepared at the neutral and acidic pH was conducted. It was found that the hydrothermal treatment of α-chitin must be performed at the acidic pH to obtain a self-sustaining hydrogel of well-disintegrated NFs. The disintegration of β-chitin into NFs occurred more easily at the acidic pH than under the neutral conditions; however, in the latter case, the same disintegration degree of β-ChNFs could be achieved by increasing the number of disintegration steps. At the same disintegration degree, the strength of the self-sustaining hydrogel obtained at the neutral conditions was greater than that of the gel prepared at the acidic pH, indicating that the electrostatic repulsion caused by acid addition negatively affected the formation of the hydrogel network structure. To maximize the efficiency of the hydrothermal gelation process, ChNFs should be as thin as possible and electrostatic repulsion forces must be controlled.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abe K, Ifuku S, Kawata M, Yano H (2014) Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment. Cellulose 21:535–540CrossRef Abe K, Ifuku S, Kawata M, Yano H (2014) Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment. Cellulose 21:535–540CrossRef
Zurück zum Zitat Aida TM, Oshima K, Abe C, Maruta R, Iguchi M, Watanabe M, Smith RL (2014) Dissolution of mechanically milled chitin in high temperature water. Carbohydr Polym 106:172–178CrossRef Aida TM, Oshima K, Abe C, Maruta R, Iguchi M, Watanabe M, Smith RL (2014) Dissolution of mechanically milled chitin in high temperature water. Carbohydr Polym 106:172–178CrossRef
Zurück zum Zitat Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580CrossRef Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580CrossRef
Zurück zum Zitat Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21:3865–3871CrossRef Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21:3865–3871CrossRef
Zurück zum Zitat Dutta AK, Izawa H, Morimoto M, Saimoto H, Ifuku S (2013) Simple preparation of chitin nanofibers from dry squid pen β-chitin powder by the star burst system. J Chitin Chitosan Sci 1:186–191CrossRef Dutta AK, Izawa H, Morimoto M, Saimoto H, Ifuku S (2013) Simple preparation of chitin nanofibers from dry squid pen β-chitin powder by the star burst system. J Chitin Chitosan Sci 1:186–191CrossRef
Zurück zum Zitat Fan Y, Saito T, Isogai A (2008) Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules 9:1919–1923CrossRef Fan Y, Saito T, Isogai A (2008) Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules 9:1919–1923CrossRef
Zurück zum Zitat Gautier S, Xhauflaire-Uhoda E, Gonry P, Piérard GE (2008) Chitin-glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int J Cosmet Sci 30:459–469CrossRef Gautier S, Xhauflaire-Uhoda E, Gonry P, Piérard GE (2008) Chitin-glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int J Cosmet Sci 30:459–469CrossRef
Zurück zum Zitat Han LK, Kimura Y, Okuda H (1999) Reduction in fat storage during chitin–chitosan treatment in mice fed a high-fat diet. Int J Obes 23:174–179CrossRef Han LK, Kimura Y, Okuda H (1999) Reduction in fat storage during chitin–chitosan treatment in mice fed a high-fat diet. Int J Obes 23:174–179CrossRef
Zurück zum Zitat Izumi R, Komada S, Ochi K, Karasawa L, Osaki T, Murahata Y, Tsuka T, Imagawa T, Itoh N, Okamoto Y, Izawa H, Morimoto M, Saimoto H, Azuma K, Ifuku S (2015) Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process. Carbohydr Polym 123:461–467CrossRef Izumi R, Komada S, Ochi K, Karasawa L, Osaki T, Murahata Y, Tsuka T, Imagawa T, Itoh N, Okamoto Y, Izawa H, Morimoto M, Saimoto H, Azuma K, Ifuku S (2015) Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process. Carbohydr Polym 123:461–467CrossRef
Zurück zum Zitat Jayakumar R, Divya Rani VV, Shalumon KT, Kumar PS, Nair SV, Furuike T, Tamura H (2009) Bioactive and osteoblast cell attachment studies of novel α- and β-chitin membranes for tissue-engineering applications. Int J Biol Macromol 45:260–264CrossRef Jayakumar R, Divya Rani VV, Shalumon KT, Kumar PS, Nair SV, Furuike T, Tamura H (2009) Bioactive and osteoblast cell attachment studies of novel α- and β-chitin membranes for tissue-engineering applications. Int J Biol Macromol 45:260–264CrossRef
Zurück zum Zitat Klinchongkon K, Khuwijitjaru P, Wiboonsirikul J, Adachi S (2015) Extraction of oligosaccharides from passion fruit peel by subcritical water treatment. J Food Process Eng 40:e12269CrossRef Klinchongkon K, Khuwijitjaru P, Wiboonsirikul J, Adachi S (2015) Extraction of oligosaccharides from passion fruit peel by subcritical water treatment. J Food Process Eng 40:e12269CrossRef
Zurück zum Zitat Lewis L, Derakhshandeh M, Hatzikiriakos SG, Hamad WY, MacLachlan MJ (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17:2747–2754CrossRef Lewis L, Derakhshandeh M, Hatzikiriakos SG, Hamad WY, MacLachlan MJ (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17:2747–2754CrossRef
Zurück zum Zitat Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N, Nair SV, Jayakumar R (2009) Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44:1–5CrossRef Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N, Nair SV, Jayakumar R (2009) Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44:1–5CrossRef
Zurück zum Zitat Mushi NE, Kochumalayil J, Cervin NT, Zhou Q, Berglund LA (2016) Nanostructurally controlled hydrogel based on small-diameter native chitin nanofibers: preparation, structure, and properties. Chemsuschem 9:989–995CrossRef Mushi NE, Kochumalayil J, Cervin NT, Zhou Q, Berglund LA (2016) Nanostructurally controlled hydrogel based on small-diameter native chitin nanofibers: preparation, structure, and properties. Chemsuschem 9:989–995CrossRef
Zurück zum Zitat Nata IF, Wang SSS, Wu TM, Lee CK (2012) β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydr Polym 90:1509–1514CrossRef Nata IF, Wang SSS, Wu TM, Lee CK (2012) β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydr Polym 90:1509–1514CrossRef
Zurück zum Zitat Ogawa Y, Kimura S, Wada M (2011) Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril. J Struct Biol 176:83–90CrossRef Ogawa Y, Kimura S, Wada M (2011) Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril. J Struct Biol 176:83–90CrossRef
Zurück zum Zitat Osada M, Miura C, Nakagawa YS, Kaihara M, Nikaido M, Totani K (2012) Effect of sub- and supercritical water pretreatment on enzymatic degradation of chitin. Carbohydr Polym 88:308–312CrossRef Osada M, Miura C, Nakagawa YS, Kaihara M, Nikaido M, Totani K (2012) Effect of sub- and supercritical water pretreatment on enzymatic degradation of chitin. Carbohydr Polym 88:308–312CrossRef
Zurück zum Zitat Osada M, Kikuta K, Yoshida K, Totani K, Ogata M, Usui T (2013) Non-catalytic synthesis of chromogen I and III from N-acetyl-D-glucosamine in high-temperature water. Green Chem 15:2960–2966CrossRef Osada M, Kikuta K, Yoshida K, Totani K, Ogata M, Usui T (2013) Non-catalytic synthesis of chromogen I and III from N-acetyl-D-glucosamine in high-temperature water. Green Chem 15:2960–2966CrossRef
Zurück zum Zitat Osada M, Miura C, Nakagawa YS, Kaihara M, Nikaido M, Totani K (2015) Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation. Carbohydr Polym 134:718–725CrossRef Osada M, Miura C, Nakagawa YS, Kaihara M, Nikaido M, Totani K (2015) Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation. Carbohydr Polym 134:718–725CrossRef
Zurück zum Zitat Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc A 321:523–536CrossRef Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc A 321:523–536CrossRef
Zurück zum Zitat Rodríguez-Meizoso I, Jaime L, Santoyo S, Señoráns FJ, Cifuentes A, Ibáñez E (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal 51:456–463CrossRef Rodríguez-Meizoso I, Jaime L, Santoyo S, Señoráns FJ, Cifuentes A, Ibáñez E (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal 51:456–463CrossRef
Zurück zum Zitat Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15:4195–4203CrossRef Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15:4195–4203CrossRef
Zurück zum Zitat Shen X, Shamshina JL, Berton P, Bandomir J, Wang H, Gurau G, Rogers RD (2016) Comparison of hydrogels prepared with ionic-liquid-isolated vs commercial chitin and cellulose. ACS Sustain Chem Eng 4:471–480CrossRef Shen X, Shamshina JL, Berton P, Bandomir J, Wang H, Gurau G, Rogers RD (2016) Comparison of hydrogels prepared with ionic-liquid-isolated vs commercial chitin and cellulose. ACS Sustain Chem Eng 4:471–480CrossRef
Zurück zum Zitat Sowmya S, Kumar PTS, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Biocompatible β-chitin hydrogel/nanobioactive glass ceramic nanocomposite scaffolds for periodontal bone regeneration. Trends Biomater Artif Organs 25:1–11 Sowmya S, Kumar PTS, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Biocompatible β-chitin hydrogel/nanobioactive glass ceramic nanocomposite scaffolds for periodontal bone regeneration. Trends Biomater Artif Organs 25:1–11
Zurück zum Zitat Suenaga S, Osada M (2018a) Self-sustaining cellulose nanofiber hydrogel produced by hydrothermal gelation without additives. ACS Biomater Sci Eng 4:1536–1545 Suenaga S, Osada M (2018a) Self-sustaining cellulose nanofiber hydrogel produced by hydrothermal gelation without additives. ACS Biomater Sci Eng 4:1536–1545
Zurück zum Zitat Suenaga S, Osada M (2018b) Systematic dynamic viscoelasticity measurements for chitin nanofibers prepared with various concentrations, disintegration times, acidities, and crystalline structres. Int J Biol Macromol 115:431–437CrossRef Suenaga S, Osada M (2018b) Systematic dynamic viscoelasticity measurements for chitin nanofibers prepared with various concentrations, disintegration times, acidities, and crystalline structres. Int J Biol Macromol 115:431–437CrossRef
Zurück zum Zitat Suenaga S, Nikaido N, Totani K, Kawasaki K, Ito Y, Yamashita K, Osada M (2016) Effect of purification method of β-chitin from squid pen on the properties of β-chitin nanofibers. Int J Biol Macromol 91:987–993CrossRef Suenaga S, Nikaido N, Totani K, Kawasaki K, Ito Y, Yamashita K, Osada M (2016) Effect of purification method of β-chitin from squid pen on the properties of β-chitin nanofibers. Int J Biol Macromol 91:987–993CrossRef
Zurück zum Zitat Suenaga S, Totani K, Nomura Y, Yamashita K, Shimada I, Fukunaga H, Takahashi N, Osada M (2017) Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers. Int J Biol Macromol 102:358–366CrossRef Suenaga S, Totani K, Nomura Y, Yamashita K, Shimada I, Fukunaga H, Takahashi N, Osada M (2017) Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers. Int J Biol Macromol 102:358–366CrossRef
Zurück zum Zitat Tamura H, Nagahama H, Tokura S (2006) Preparation of chitin hydrogel under mild conditions. Cellulose 13:357–364CrossRef Tamura H, Nagahama H, Tokura S (2006) Preparation of chitin hydrogel under mild conditions. Cellulose 13:357–364CrossRef
Zurück zum Zitat Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535CrossRef Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535CrossRef
Zurück zum Zitat Xu D, Huang J, Zhao D, Ding B, Zhang L, Cai J (2016) High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv Mater 28:5844–5849CrossRef Xu D, Huang J, Zhao D, Ding B, Zhang L, Cai J (2016) High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv Mater 28:5844–5849CrossRef
Zurück zum Zitat Yan N, Chen X (2015) Don’t waste seafood waste. Turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature 524:155–158CrossRef Yan N, Chen X (2015) Don’t waste seafood waste. Turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature 524:155–158CrossRef
Zurück zum Zitat Zhang Y, Xue C, Xue Y, Gao R, Zhang X (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917CrossRef Zhang Y, Xue C, Xue Y, Gao R, Zhang X (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917CrossRef
Metadaten
Titel
Parameters of hydrothermal gelation of chitin nanofibers determined using a severity factor
verfasst von
Shin Suenaga
Mitsumasa Osada
Publikationsdatum
28.09.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2053-3

Weitere Artikel der Ausgabe 12/2018

Cellulose 12/2018 Zur Ausgabe