Skip to main content

2016 | OriginalPaper | Buchkapitel

11. Parametric Spectral Methods

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, parametric methods of spectral estimation are presented. They rely on fitting a proper stochastic model to the data record. The model is supposed to represent the persistence, i.e., autocorrelation, present in the process generating the observed signal. The signal’s spectral characteristics are then derived from the estimated model. This approach requires selecting model type and order (number of parameters), and then estimating the parameters. This can be done in several different ways, and the method of parameter estimation gives its name to the parametric spectral method: we thus have the Yule-Walker method, the covariance and modified covariance methods, Burg’s method and the maximum entropy method. These methods provide better resolution than non-parametric ones, especially when the record is short.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Since the input is stationary and the filter is stable, the output is also certainly stationary.
 
2
We do not need to worry about B(z) and its degree, because the numerator of H(z), representing the polynomial transfer function of an FIR filter, contributes only zeros outside the origin of the z-plane; it has poles in the origin. On the other hand, 1 / A(z) is an IIR rational transfer function that contributes poles outside the origin and zeros in the origin. In summary, outside the origin the poles of H(z) are exclusively due to the zeros of A(z).
 
3
A system with rational transfer function is minimum-phase if not only all its poles, but also all its zeros are inside the unit circle, so that both the system and its inverse are causal and stable. A minimum-phase system is called this way because it has an additional useful property: the natural logarithm of the magnitude of the frequency response is related to the phase angle of the frequency response by the Hilbert transform. This implies that for all causal and stable systems that have the same magnitude response, the minimum phase system has its impulse-response energy concentrated near the start of h[n], i.e., it minimizes the delay of the energy in the impulse response. As a result, for all causal and stable systems that have the same magnitude response, the minimum phase system has the minimum group delay.
 
4
When the AC absolute values take much longer to decay than the rate associated with the ARMA class of processes discussed in this chapter, the process is often referred to as having long-term memory or long-range persistence. Therefore the memory associated with ARMA processes is usually classified as short-term memory.
 
5
This expression is common in stochastic model literature, but does not mean that the IIR filter has no zeros. Actually, as we learned in Sect. 3.​2.​8 (Table 3.​1), a rational transfer function with numerator degree \(M=0\) and denominator degree \(N=p\) has p poles and no zeros at finite values of z outside the origin of the z-plane, and p zeros in the origin.
 
6
The expression for \(\gamma _{ex}[l]\) can also be directly derived from the formula for the input-output cross-covariance of an LTI system, reported in Sect. 9.​9:
$$\begin{aligned} \gamma _{ex}[l] =\sum _{k=-\infty }^{+\infty }h[k] \gamma _{ee}[l+k] =\sigma _e^2 \sum _{k=-\infty }^{+\infty }h[k] \delta [l+k]=\sigma _e^2 h[-l] \leadsto \gamma _{ex}[l-i] =\sigma _e^2 h[i-l]. \end{aligned}$$
 
7
These equations have been named variously in the literature, and are also referred to as normal equations, or Wiener-Hopf equations.
 
8
In linear algebra, a square (\(n\times n\)) symmetric real matrix \(\mathbf {M}\) is said to be positive definite if the quadratic form \(\mathbf {v}^T \mathbf {M v}\) is positive for every non-zero column vector \(\mathbf {v}\) of n real numbers. The symbol \(\mathbf {v}^T\) denotes the transpose of \(\mathbf {v}\), i.e., the corresponding row vector.
 
9
In linear algebra, a Toeplitz matrix (named after Otto Toeplitz), or diagonal-constant matrix, is a matrix in which each descending diagonal from left to right is constant, i.e., all the elements on any line parallel to the main diagonal are identical.
 
10
If the roots lie on the unit circle, the AR process will only be stationary in case of noise being identical to zero. In that case a harmonic process will result, consisting of a sum of cosine functions. We might wonder what will happen if the AR process has poles very close to the unit circle. As poles on the unit circle represent a harmonic process, an AR process with poles near the unit circle can be expected to demonstrate some kind of pseudo-periodic behavior (Priestley 1994). In this case the AC can be described as a sum of weakly damped sinusoids. Furthermore, the AR process may exhibit a kind of almost-non-stationary behavior, because the transfer function will be close to instability in the filtering sense. The pole locations will also affect the reliability of the various parameter estimation techniques. It was claimed by Priestley (1994) that YW equations may lead to poor parameter estimates, even for moderately large data samples, if the AR operator has a pole near the unit circle.
 
11
This does not mean that the FIR filter has no poles. Actually (see Table 3.​1), a rational transfer function with numerator degree \(M=q\) and denominator degree \(N=0\) has p zeros and no poles at finite values of z outside the origin of the z-plane, and p poles in the origin.
 
12
The equation \(\sigma _x^2=\sigma _e^2/\left( 1-\alpha ^2\right) \) can be obtained as follows:
$$\begin{aligned} \mathrm {E}\left\{ x[n]^2\right\}= & {} \mathrm {E}\left\{ \left( \alpha x[n-1]+e[n]\right) ^2\right\} = \\= & {} \alpha ^2 \mathrm {E}\left\{ x[n-1]^2\right\} +2\alpha \mathrm {E}\left\{ x[n-1]e[n]\right\} +\mathrm {E}\left\{ e[n]^2\right\} = \alpha ^2 \mathrm {E}\left\{ x[n-1]^2\right\} + \sigma _e^2, \end{aligned}$$
because the white-noise input and the output signal are uncorrelated.
If we substitute the model expression into the last equation, i.e., if we use \(x[n-1]=\alpha x[n-2]+e[n-1]\), and then iterate, we get
$$\begin{aligned} \mathrm {E}\left\{ x[n]^2\right\} = \sigma _e^2 + \alpha ^2 \sigma _e^2 + \alpha ^4 \sigma _e^2 +\cdots +\alpha ^{2l} \mathrm {E}\left\{ x[n-l]^2\right\} \end{aligned}$$
that for increasing l becomes, for a centered x[n] for which \(\mathrm {E}\left\{ x[n]^2\right\} =\sigma _x^2\),
$$\begin{aligned} \sigma _x^2 = \sigma _e^2 (1+\alpha ^2 + \alpha ^4 +\cdots ) = \frac{\sigma _e^2}{1-\alpha ^2}. \end{aligned}$$
In a similar way, the formula for the AC at lag l could be derived. We can also derive these formulas directly from YW equations:
$$\begin{aligned} \gamma [l]+a_1\gamma [-1]=\sigma ^2_e \delta [l] \end{aligned}$$
provides
$$\begin{aligned} \gamma [0]+a_1\gamma [l-1]=\sigma ^2_e =\gamma [0]+a_1\gamma [1] \end{aligned}$$
and since \(\gamma [0]=\sigma ^2_x\),
$$\begin{aligned} \sigma ^2_x=\sigma ^2_e-a_1\gamma [1]=\sigma ^2_e+\alpha \gamma [1]. \end{aligned}$$
Also,
$$\begin{aligned} \gamma [1]+a_1\gamma [0]=0,\qquad \qquad \gamma [1]=-a_1 \sigma ^2_x =\alpha \sigma ^2_x, \end{aligned}$$
hence
$$\begin{aligned} a_1=-\frac{\gamma [1]}{\gamma [0]}=-\rho [1], \qquad \qquad \alpha =\rho [1]. \end{aligned}$$
Proceeding further, we have
$$\begin{aligned} \gamma [2]+a_1\gamma [1]=0,\qquad \qquad \gamma [2]=-a_1 \gamma [1] =\alpha \gamma [1]=\alpha ^2 \sigma ^2_x, \end{aligned}$$
and by iterating, we deduce that in general
$$\begin{aligned} \gamma [l]=\alpha ^l \sigma ^2_x=\rho [1]^l \sigma _x^2, \qquad \qquad \rho [l]=\left( \rho [1]\right) ^l=\alpha ^l. \end{aligned}$$
Moreover we can write
$$\begin{aligned} \sigma ^2_x=\sigma ^2_e+\alpha \gamma [1]=\sigma ^2_e+\alpha ^2\sigma ^2_x, \qquad \qquad \sigma ^2_x=\frac{\sigma ^2_e}{1-\alpha ^2}, \end{aligned}$$
and finally
$$\begin{aligned} \gamma [l]=\alpha ^l \sigma ^2_x=\frac{\sigma ^2_e \alpha ^l}{1-\alpha ^2}. \end{aligned}$$
 
13
Recall that, in general, the noise that is not white is termed “colored noise” and has a smooth spectrum with more power at some frequencies with respect to others, in analogy to colored light. A typical colored noise spectrum does not contain narrowband features associated with periodic or quasi-periodic signal components (Sect. 10.​2).
 
14
The calculation of the AC is straightforward:
$$\begin{aligned} \mathrm {E}\left\{ x[n]x[n+l]\right\}= & {} \mathrm {E}\left\{ \left( e[n]+\alpha e[n-1]\right) \left( e[n+l]+\alpha e[n+l-1]\right) \right\} = \\= & {} \mathrm {E}\left\{ e[n]e[n+l]\right\} \\&+\,\alpha \mathrm {E}\left\{ e[n-1]e[n+l]\right\} +\alpha \mathrm {E}\left\{ e[n]e[n+l-1]\right\} +\alpha ^2\mathrm {E}\left\{ e[n-1]e[n+l-1]\right\} . \end{aligned}$$
The right-hand terms are all zero, except when the indexes of the noise samples involved are equal. Independently of the index, each term of the kind \(\mathrm {E}\left\{ \left( e^2[n+l]\right) \right\} \) is equal to \(\sigma _e^2\), so we can write
  • for \(l=0\), \(\mathrm {E}\left\{ x[n]^2\right\} = \sigma _e^2(1+\alpha ^2)\),
  • for \(l=1\), \(\mathrm {E}\left\{ x[n]x[n+1]\right\} = \alpha \sigma _e^2\),
  • for \(l=-1\), \(\mathrm {E}\left\{ x[n]x[n-1]\right\} = \alpha \sigma _e^2\),
while for different values of l we find zero.
 
15
In statistics and machine learning, overfitting occurs when a statistical model ends up describing random errors or noise instead of the underlying relation. Overfitting generally occurs when a model is excessively complex, such as having too many parameters relative to the number of observations. A model that has been overfit will generally have poor predictive performance, as it can exaggerate minor fluctuations in the data. In other words, in case of overfitting, the estimator is too flexible and captures illusory trends in the data. These illusory trends are often the result of the noise in the observations. The contrary phenomenon, underfitting, occurs when an estimator is not flexible enough to capture the underlying trends in the observed data, usually because of an insufficient number of parameters.
 
16
Recall that we are dealing with centered data, which in practice means that the sample mean has been subtracted from each data sample. If the process true mean value were known, we should write \(\mathrm{FPE}[p]=[(N+p)/(N-p)]\sigma ^2_{e,p}\).
 
17
For example, the 0.975 probability point of the standard normal distribution is 1.96. This means that for a normally-distributed variable, 95 % of the data lies within \(1.96 \approx 2\) standard deviations of the mean. The 95 % confidence interval for the AC at lag l is therefore \(\pm 1.96/\sqrt{N}\) . For the 99 % confidence interval, the 0.995 probability point of the normal distribution is 2.57, so, 99.5 % of the data lies within \(2.57 \approx 3\) standard deviations of the mean. The 99 % confidence interval for the AC is thus \(\pm 2.57/\sqrt{N}\). A value outside this confidence interval is evidence that the model residuals are not random at the chosen probability level. If a residual-AC plot for a given series shows that none of the AC samples of the chosen model residuals fall outside the 99 % confidence interval around zero, then the modeling explains the persistence and yields random residuals at that confidence level.
 
18
The DOF would be \(K-p-q\) in the ARMA case.
 
19
Narrowband processes have AC values slowly decreasing with increasing lag, which produce large values of \(p_{max}\) in the AR-spectrum estimation procedure. Broadband processes have ACs decreasing faster with lag. For an example of this behavior, compare Fig. 11.11a, which is relative to a broadband AR(2) process (as shown in Fig. 11.13a), with Fig. 11.11a, which is relative to a broadband AR(2) process (as shown in Fig. 11.13b).
 
20
This matrix would be Hermitian in the case of complex signals.
 
Literatur
Zurück zum Zitat Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control AC19(6), 716–723 (1974) Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control AC19(6), 716–723 (1974)
Zurück zum Zitat Allen, M.R., Smith, L.A.: Monte Carlo SSA: detecting irregular oscillations in the presence of coloured noise. J. Climate 9(12), 3373–3404 (1996)CrossRef Allen, M.R., Smith, L.A.: Monte Carlo SSA: detecting irregular oscillations in the presence of coloured noise. J. Climate 9(12), 3373–3404 (1996)CrossRef
Zurück zum Zitat Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, New York (1971)MATH Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, New York (1971)MATH
Zurück zum Zitat Anderson, O.: Time Series Analysis and Forecasting: The Box-Jenkins Approach. Butterworths, London (1976) Anderson, O.: Time Series Analysis and Forecasting: The Box-Jenkins Approach. Butterworths, London (1976)
Zurück zum Zitat Arfken, G.B.: Mathematical Methods for Physicists. Academic Press, Orlando (1985)MATH Arfken, G.B.: Mathematical Methods for Physicists. Academic Press, Orlando (1985)MATH
Zurück zum Zitat Bartlett, M.S.: An Introduction to Stochastic Processes. Cambridge University Press, Cambridge (1955)MATH Bartlett, M.S.: An Introduction to Stochastic Processes. Cambridge University Press, Cambridge (1955)MATH
Zurück zum Zitat Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Statist. Assoc. 65, 1509–1526 (1970)MathSciNetCrossRefMATH Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Statist. Assoc. 65, 1509–1526 (1970)MathSciNetCrossRefMATH
Zurück zum Zitat Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 4th edn. Wiley, Hoboken (2008)CrossRefMATH Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 4th edn. Wiley, Hoboken (2008)CrossRefMATH
Zurück zum Zitat Burg, J.P.: Maximum entropy spectral analysis. In: 37th Annual International Meeting., Soc. Explor. Geophys., Oklahoma City, OK, USA (1967) Burg, J.P.: Maximum entropy spectral analysis. In: 37th Annual International Meeting., Soc. Explor. Geophys., Oklahoma City, OK, USA (1967)
Zurück zum Zitat Burg, J.P.: A new analysis technique for time series data. In: NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics, Enschede, The Netherlands (1968) Burg, J.P.: A new analysis technique for time series data. In: NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics, Enschede, The Netherlands (1968)
Zurück zum Zitat Burg, J.P.: Maximum Entropy Spectral Analysis. Ph.D. Dissertation, Stanford University, Stanford, CA, USA (1975) Burg, J.P.: Maximum Entropy Spectral Analysis. Ph.D. Dissertation, Stanford University, Stanford, CA, USA (1975)
Zurück zum Zitat Chen, W.Y., Stegen, G.R.: Experiments with maximum entropy power spectra of sinusoids. J. Geophys. Res. 79, 3019–3022 (1974)CrossRef Chen, W.Y., Stegen, G.R.: Experiments with maximum entropy power spectra of sinusoids. J. Geophys. Res. 79, 3019–3022 (1974)CrossRef
Zurück zum Zitat Chatfield, C.: The Analysis of Time Series. CRC Press, Boca Raton (2004)MATH Chatfield, C.: The Analysis of Time Series. CRC Press, Boca Raton (2004)MATH
Zurück zum Zitat de Waele, S., Broersen, P.M.T.: Order selection for vector autoregressive models. IEEE Trans. Signal Process. 51(2), 427–432 (2003)CrossRef de Waele, S., Broersen, P.M.T.: Order selection for vector autoregressive models. IEEE Trans. Signal Process. 51(2), 427–432 (2003)CrossRef
Zurück zum Zitat Fougère, P.F., Zawalick, E.J., Radoski, H.R.: Spontaneous line splitting in maximum entropy power spectrum analysis. Phys. Earth Planet. In. 12, 201–207 (1976)CrossRef Fougère, P.F., Zawalick, E.J., Radoski, H.R.: Spontaneous line splitting in maximum entropy power spectrum analysis. Phys. Earth Planet. In. 12, 201–207 (1976)CrossRef
Zurück zum Zitat Fougère, P.F.: A solution to the problem of spontaneous line splitting in maximum entropy power spectrum analysis. J. Geophys. Res. 82, 1051–1054 (1976)CrossRef Fougère, P.F.: A solution to the problem of spontaneous line splitting in maximum entropy power spectrum analysis. J. Geophys. Res. 82, 1051–1054 (1976)CrossRef
Zurück zum Zitat Ghil, M., Taricco, C.: Advanced Spectral Analysis Methods. In: G. Cini Castagnoli and A. Provenzale (eds.) Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models, Società Italiana di Fisica, Bologna, & IOS Press, Amsterdam (1997) Ghil, M., Taricco, C.: Advanced Spectral Analysis Methods. In: G. Cini Castagnoli and A. Provenzale (eds.) Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models, Società Italiana di Fisica, Bologna, & IOS Press, Amsterdam (1997)
Zurück zum Zitat Hayes, M.H.: Statistical Digital Signal Processing and Modeling. Wiley, New York (1996) Hayes, M.H.: Statistical Digital Signal Processing and Modeling. Wiley, New York (1996)
Zurück zum Zitat Haykin, S. (ed.): Nonlinear methods of spectral analysis. Topics in Applied Physics, vol. 34. Springer, New York (1983) Haykin, S. (ed.): Nonlinear methods of spectral analysis. Topics in Applied Physics, vol. 34. Springer, New York (1983)
Zurück zum Zitat Hess, G.D., Iwata, S.: Measuring and comparing business-cycle features. J. Bus. Econ. Stat. 15(4), 432–444 (1997) Hess, G.D., Iwata, S.: Measuring and comparing business-cycle features. J. Bus. Econ. Stat. 15(4), 432–444 (1997)
Zurück zum Zitat Lacoss, R.T.: Data-adaptive spectral analysis methods. Geophysics 36, 661–675 (1971)CrossRef Lacoss, R.T.: Data-adaptive spectral analysis methods. Geophysics 36, 661–675 (1971)CrossRef
Zurück zum Zitat Levinson, N.: The Wiener RMS error criterion in filter design and prediction. J. Math. Phys. 25, 261–278 (1947)CrossRef Levinson, N.: The Wiener RMS error criterion in filter design and prediction. J. Math. Phys. 25, 261–278 (1947)CrossRef
Zurück zum Zitat Kay, S.M.: Modern Spectral Estimation: Theory and Applications. Prentice-Hall, Englewood Cliffs (1988)MATH Kay, S.M.: Modern Spectral Estimation: Theory and Applications. Prentice-Hall, Englewood Cliffs (1988)MATH
Zurück zum Zitat Kay, S.M., Marple, S.L.: Spectrum analysis-a modern perspective. Proc. IEEE 69(11), 1380–1419 (1981)CrossRef Kay, S.M., Marple, S.L.: Spectrum analysis-a modern perspective. Proc. IEEE 69(11), 1380–1419 (1981)CrossRef
Zurück zum Zitat Kolmogorov, A.N.: Interpolation and extrapolation of stationary random sequences. Izv. Akad. Nauk SSSR Ser. Mat. 5, 3–14 (1941) Kolmogorov, A.N.: Interpolation and extrapolation of stationary random sequences. Izv. Akad. Nauk SSSR Ser. Mat. 5, 3–14 (1941)
Zurück zum Zitat Marple, S.L.: Resolution of conventional fourier, autoregressive and special ARMA methods of spectral analysis. In: Proceedings of the 1977 IEEE International Conference on Acoustics, Speech and Signal Process, pp. 74–77 (1977) Marple, S.L.: Resolution of conventional fourier, autoregressive and special ARMA methods of spectral analysis. In: Proceedings of the 1977 IEEE International Conference on Acoustics, Speech and Signal Process, pp. 74–77 (1977)
Zurück zum Zitat Marple, S.L.: Digital Spectral Analysis: With Applications. Prentice-Hall, Upper Saddle River (1987) Marple, S.L.: Digital Spectral Analysis: With Applications. Prentice-Hall, Upper Saddle River (1987)
Zurück zum Zitat Mac Lane, S., Birkhoff, G.: Algebra. AMS Chelsea Publishing, New York (1999) Mac Lane, S., Birkhoff, G.: Algebra. AMS Chelsea Publishing, New York (1999)
Zurück zum Zitat McConnell, M.M., Perez-Quiros, G.: Output fluctuations in the United States: what has changed since the early 1980s? Am. Econ. Rev. 90(5), 1464–1476 (2000)CrossRef McConnell, M.M., Perez-Quiros, G.: Output fluctuations in the United States: what has changed since the early 1980s? Am. Econ. Rev. 90(5), 1464–1476 (2000)CrossRef
Zurück zum Zitat Meltzer, J.A., Zaveri, H.P., Goncharova, I.I., Distasio, M.M., Papademetris, X., Spencer, S.S., Spencer, D.D., Constable, R.T.: Effects of working memory load on oscillatory power in human intracranial EEG. Cerebral Cortex 18, 1843–1855 (2008)CrossRef Meltzer, J.A., Zaveri, H.P., Goncharova, I.I., Distasio, M.M., Papademetris, X., Spencer, S.S., Spencer, D.D., Constable, R.T.: Effects of working memory load on oscillatory power in human intracranial EEG. Cerebral Cortex 18, 1843–1855 (2008)CrossRef
Zurück zum Zitat Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Analysis and Forecasting. Wiley, New York (2008)MATH Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Analysis and Forecasting. Wiley, New York (2008)MATH
Zurück zum Zitat Parzen, E.: An Approach to Time Series Modeling and Forecasting Illustrated by Hourly Electricity Demands. Technical Report Statistical Science Division, State University of New York, 37, NY, USA (1983) Parzen, E.: An Approach to Time Series Modeling and Forecasting Illustrated by Hourly Electricity Demands. Technical Report Statistical Science Division, State University of New York, 37, NY, USA (1983)
Zurück zum Zitat Penland, C., Ghil, M., Weickmann, K.M.: Adaptive filtering and maximum entropy spectra, with application to changes in atmospheric angular momentum. J. Geophys. Res. 96, 22659–22671 (1991)CrossRef Penland, C., Ghil, M., Weickmann, K.M.: Adaptive filtering and maximum entropy spectra, with application to changes in atmospheric angular momentum. J. Geophys. Res. 96, 22659–22671 (1991)CrossRef
Zurück zum Zitat Percival, D.B., Walden, A.T.: Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge (1993)CrossRefMATH Percival, D.B., Walden, A.T.: Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge (1993)CrossRefMATH
Zurück zum Zitat Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)MATH Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)MATH
Zurück zum Zitat Priestley, M.B.: Spectral Analysis and Time Series. Academic Press, London (1994)MATH Priestley, M.B.: Spectral Analysis and Time Series. Academic Press, London (1994)MATH
Zurück zum Zitat Rissanen, J.: A universal prior for the integers and estimation by minimum description length. Ann. Statist. 11, 417–431 (1983)MathSciNetCrossRefMATH Rissanen, J.: A universal prior for the integers and estimation by minimum description length. Ann. Statist. 11, 417–431 (1983)MathSciNetCrossRefMATH
Zurück zum Zitat Robinson, E.A.: Physical Applications of Stationary Time Series. McMillan, New York (1980)MATH Robinson, E.A.: Physical Applications of Stationary Time Series. McMillan, New York (1980)MATH
Zurück zum Zitat Robinson, E.A.: A historical perspective of spectrum estimation. Proc. IEEE 70(9), 885–907 (1982)CrossRef Robinson, E.A.: A historical perspective of spectrum estimation. Proc. IEEE 70(9), 885–907 (1982)CrossRef
Zurück zum Zitat Sella, L., Vivaldo, G., Groth, A., Ghil, M.: Economic Cycles and Their Synchronization: A Survey of Spectral Properties. Nota di Lavoro 105.2013, Fondazione ENI Enrico Mattei, Milan, Italy (2013) Sella, L., Vivaldo, G., Groth, A., Ghil, M.: Economic Cycles and Their Synchronization: A Survey of Spectral Properties. Nota di Lavoro 105.2013, Fondazione ENI Enrico Mattei, Milan, Italy (2013)
Zurück zum Zitat Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1959)MATH Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1959)MATH
Zurück zum Zitat Stoica, P., Moses, R.L.: Spectral Analysis of Signals. Prentice Hall, Upper Saddle River (2005) Stoica, P., Moses, R.L.: Spectral Analysis of Signals. Prentice Hall, Upper Saddle River (2005)
Zurück zum Zitat Ulrych, T.J., Bishop, T.N.: Maximum entropy spectral analysis and autoregressive decomposition. Rev. Geophys. Space Phys. 13, 183–200 (1975)CrossRef Ulrych, T.J., Bishop, T.N.: Maximum entropy spectral analysis and autoregressive decomposition. Rev. Geophys. Space Phys. 13, 183–200 (1975)CrossRef
Zurück zum Zitat Ulrych, T.J., Clayton, R.W.: Time series modelling and maximum entropy. Phys. Earth Planet. In. 12(2–3), 188–200 (1976)CrossRef Ulrych, T.J., Clayton, R.W.: Time series modelling and maximum entropy. Phys. Earth Planet. In. 12(2–3), 188–200 (1976)CrossRef
Zurück zum Zitat Ulrych, T.J., Ooe, M.: Autoregressive and mixed autoregressive-moving average models and spectra. In: Nonlinear Methods of Spectral Analysis. Springer, New York (1979) Ulrych, T.J., Ooe, M.: Autoregressive and mixed autoregressive-moving average models and spectra. In: Nonlinear Methods of Spectral Analysis. Springer, New York (1979)
Zurück zum Zitat Vaidyanathan, P.P.: The Theory of Linear Prediction. Morgan & Claypool, San Rafael (2008)MATH Vaidyanathan, P.P.: The Theory of Linear Prediction. Morgan & Claypool, San Rafael (2008)MATH
Zurück zum Zitat Walker, G.: On periodicity in series of related terms. Proc. R. Soc. Lond. A 131, 518–532 (1931)CrossRefMATH Walker, G.: On periodicity in series of related terms. Proc. R. Soc. Lond. A 131, 518–532 (1931)CrossRefMATH
Zurück zum Zitat Wei, W.: Time Series Analysis. Addison-Wesley, New York (1990) Wei, W.: Time Series Analysis. Addison-Wesley, New York (1990)
Zurück zum Zitat Whittle, P.: Hypothesis Testing in Time Series Analysis. Almquist & Wiksell, Uppsala (1951)MATH Whittle, P.: Hypothesis Testing in Time Series Analysis. Almquist & Wiksell, Uppsala (1951)MATH
Zurück zum Zitat Wold, H.0.: A Study in the Analysis of Stationary Time Series. Almqvist & Wiksell, Uppsala (1938) Wold, H.0.: A Study in the Analysis of Stationary Time Series. Almqvist & Wiksell, Uppsala (1938)
Zurück zum Zitat Yaglom, A.M.: An Introduction to the Theory of Stationary Random Functions. Courier Dover Publications, New York (2004) Yaglom, A.M.: An Introduction to the Theory of Stationary Random Functions. Courier Dover Publications, New York (2004)
Zurück zum Zitat Yule, G.U.: On a method for investigating periodicities in disturbed series with special reference to Wolf’s sunspot numbers. Philos. Trans. R. Soc. Lond. A 26, 267–298 (1927)CrossRefMATH Yule, G.U.: On a method for investigating periodicities in disturbed series with special reference to Wolf’s sunspot numbers. Philos. Trans. R. Soc. Lond. A 26, 267–298 (1927)CrossRefMATH
Metadaten
Titel
Parametric Spectral Methods
verfasst von
Silvia Maria Alessio
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-25468-5_11

Neuer Inhalt