Skip to main content

2023 | OriginalPaper | Buchkapitel

Parametric Tuning of Natural Frequencies of Tuning Fork Gyroscope

verfasst von : Rakesha Chandra Dash, Rakesh Tirupathi, P. Krishna Menon, Ashok Kumar Pandey

Erschienen in: Microactuators, Microsensors and Micromechanisms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The sequence of mode shapes play a vital role in designing a dual mass tuning fork gyroscope (TFG). To avoid loss of energy, a desired separation of frequencies between operating modes (out-of-phase drive and sense) and parasitic modes is required. Hence, regulation of mode shapes is an essential criterion in TFG design. In the present work, the influence of several crucial parameters such as coupling mechanisms and dimensions of folded beams on the in-plane frequencies are studied numerically by using finite element based COMSOL software.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)CrossRef Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)CrossRef
2.
Zurück zum Zitat Xia, D., Yu, C., Sensors, L.K.: undefined,: the development of micromachined gyroscope structure and circuitry technology. Mdpi. Com. 14, 1394–1473 (2014) Xia, D., Yu, C., Sensors, L.K.: undefined,: the development of micromachined gyroscope structure and circuitry technology. Mdpi. Com. 14, 1394–1473 (2014)
3.
Zurück zum Zitat Söderkvist, J.: Micromachined gyroscopes. Sens. Actuators A Phys. 43, 65–71 (1994)CrossRef Söderkvist, J.: Micromachined gyroscopes. Sens. Actuators A Phys. 43, 65–71 (1994)CrossRef
4.
Zurück zum Zitat Passaro, V.M.N., Cuccovillo, A., Vaiani, L., De Carlo, M., Campanella, C.E.: Gyroscope technology and applications: a review in the industrial perspective. Sensors 17, 2284 (2017)CrossRef Passaro, V.M.N., Cuccovillo, A., Vaiani, L., De Carlo, M., Campanella, C.E.: Gyroscope technology and applications: a review in the industrial perspective. Sensors 17, 2284 (2017)CrossRef
5.
Zurück zum Zitat Ma, W., Lin, Y., Liu, S., Zheng, X., Jin, Z.: A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique. J. Micromech. Microeng. Iopscience. Iop. Org. 27(2) (2016) Ma, W., Lin, Y., Liu, S., Zheng, X., Jin, Z.: A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique. J. Micromech. Microeng. Iopscience. Iop. Org. 27(2) (2016)
6.
Zurück zum Zitat Pang, G., Liu, H.: Evaluation of a low-cost MEMS accelerometer for distance measurement. J. Intell. Robot. Syst. Theory Appl. 30, 249–265 (2001)CrossRefMATH Pang, G., Liu, H.: Evaluation of a low-cost MEMS accelerometer for distance measurement. J. Intell. Robot. Syst. Theory Appl. 30, 249–265 (2001)CrossRefMATH
7.
Zurück zum Zitat Wu, J., Zhou, Z., Fourati, H., Cheng, Y.: A super fast attitude determination algorithm for consumer-level accelerometer and magnetometer. IEEE Trans. Consum. Electron. 64(3), 375–381 (2018)CrossRef Wu, J., Zhou, Z., Fourati, H., Cheng, Y.: A super fast attitude determination algorithm for consumer-level accelerometer and magnetometer. IEEE Trans. Consum. Electron. 64(3), 375–381 (2018)CrossRef
8.
Zurück zum Zitat Nguyen, M.N., Ha, N.S., Nguyen, L.Q., Chu, H.M., Vu, H.N.: Z-axis micromachined tuning fork gyroscope with low air damping. Micromachines 8, 42 (2017)CrossRef Nguyen, M.N., Ha, N.S., Nguyen, L.Q., Chu, H.M., Vu, H.N.: Z-axis micromachined tuning fork gyroscope with low air damping. Micromachines 8, 42 (2017)CrossRef
9.
Zurück zum Zitat Yang, C., Li, H.: Digital control system for the MEMS tuning fork gyroscope based on synchronous integral demodulator. IEEE Sens. J. 15(10), 5755–5764 (2015)CrossRef Yang, C., Li, H.: Digital control system for the MEMS tuning fork gyroscope based on synchronous integral demodulator. IEEE Sens. J. 15(10), 5755–5764 (2015)CrossRef
10.
Zurück zum Zitat Guan, Y., Gao, S., Liu, H., Jin, L., Niu, S.: Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16, 468 (2016)CrossRef Guan, Y., Gao, S., Liu, H., Jin, L., Niu, S.: Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16, 468 (2016)CrossRef
11.
Zurück zum Zitat Prikhodko, I., Zotov, S., Trusov, A., Shkel, A.M.: Foucault pendulum on a chip: rate integrating silicon MEMS gyroscope. Elsevier. 177(2012), 67–78 (2012) Prikhodko, I., Zotov, S., Trusov, A., Shkel, A.M.: Foucault pendulum on a chip: rate integrating silicon MEMS gyroscope. Elsevier. 177(2012), 67–78 (2012)
12.
Zurück zum Zitat Tatar, E., Mukherjee, T., Fedder, G.K.: Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope. J. Microelectromech. Syst. 26(3), 569–579 Tatar, E., Mukherjee, T., Fedder, G.K.: Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope. J. Microelectromech. Syst. 26(3), 569–579
13.
Zurück zum Zitat Park, B., Han, K., Lee, S., Yu, M.-J.: Analysis of compensation for a g-sensitivity scale-factor error for a MEMS vibratory gyroscope. Iopscience. Iop. Org 25(11), 115006 (2015) Park, B., Han, K., Lee, S., Yu, M.-J.: Analysis of compensation for a g-sensitivity scale-factor error for a MEMS vibratory gyroscope. Iopscience. Iop. Org 25(11), 115006 (2015)
14.
Zurück zum Zitat Sonmezoglu, S., Alper, S., Akin, T.: An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth. Ieeexplore. Ieee, Org (2014)CrossRef Sonmezoglu, S., Alper, S., Akin, T.: An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth. Ieeexplore. Ieee, Org (2014)CrossRef
15.
Zurück zum Zitat Zhou, X., Xiao, D., Wu, X., Wu, Y., Hou, Z., He, K., Li, Q.: Stiffness-mass decoupled silicon disk resonator for high resolution gyroscopic application with long decay time constant (8.695 s). Appl. Phys. Lett. 109 (2016) Zhou, X., Xiao, D., Wu, X., Wu, Y., Hou, Z., He, K., Li, Q.: Stiffness-mass decoupled silicon disk resonator for high resolution gyroscopic application with long decay time constant (8.695 s). Appl. Phys. Lett. 109 (2016)
16.
Zurück zum Zitat Guan, Y., Gao, S., Jin, L., Cao, L.: Design and vibration sensitivity of a MEMS tuning fork gyroscope with anchored coupling mechanism. Microsyst. Technol. 22, 247–254 Guan, Y., Gao, S., Jin, L., Cao, L.: Design and vibration sensitivity of a MEMS tuning fork gyroscope with anchored coupling mechanism. Microsyst. Technol. 22, 247–254
17.
Zurück zum Zitat Nusbaum, U., Rusnak, I., Klein, I.: Angular accelerometer-based inertial navigation system. Navigation. 66, 681–693 (2019)CrossRef Nusbaum, U., Rusnak, I., Klein, I.: Angular accelerometer-based inertial navigation system. Navigation. 66, 681–693 (2019)CrossRef
18.
Zurück zum Zitat He, Q., Zeng, C., He, X., Xu, X., Lin, Z.: Measurement, undefined 2018, Calibrating accelerometers for space-stable inertial navigation systems at system level. Elsevier He, Q., Zeng, C., He, X., Xu, X., Lin, Z.: Measurement, undefined 2018, Calibrating accelerometers for space-stable inertial navigation systems at system level. Elsevier
19.
Zurück zum Zitat El-Sheimy, N., Youssef, A.: Inertial sensors technologies for navigation applications: state of the art and future trends. Satell. Navig. 1 (2020) El-Sheimy, N., Youssef, A.: Inertial sensors technologies for navigation applications: state of the art and future trends. Satell. Navig. 1 (2020)
20.
Zurück zum Zitat Petritoli, E., Leccese, F., Leccese, M.: Inertial navigation systems for UAV: Uncertainty and error measurements. Ieeexplore. IEEE, Org (2019) Petritoli, E., Leccese, F., Leccese, M.: Inertial navigation systems for UAV: Uncertainty and error measurements. Ieeexplore. IEEE, Org (2019)
21.
Zurück zum Zitat Handtmann, M., Aigner, R., Meckes, A., Wachutka, G.K.M.: Sensitivity enhancement of MEMS inertial sensors using negative springs and active control. Sens. Actuators A Phys. 97–98, 153–160 (2002)CrossRef Handtmann, M., Aigner, R., Meckes, A., Wachutka, G.K.M.: Sensitivity enhancement of MEMS inertial sensors using negative springs and active control. Sens. Actuators A Phys. 97–98, 153–160 (2002)CrossRef
22.
Zurück zum Zitat Masu, K., Machida, K., Yamane, D., Ito, H., Ishihara, N., Chang, T.-F.M., Sone, M., Shigeyama, R., Ogata, T., Miyake, Y.: (Invited) CMOS-MEMS based microgravity sensor and its application. ECS Trans. 97, 91–108 (2020)CrossRef Masu, K., Machida, K., Yamane, D., Ito, H., Ishihara, N., Chang, T.-F.M., Sone, M., Shigeyama, R., Ogata, T., Miyake, Y.: (Invited) CMOS-MEMS based microgravity sensor and its application. ECS Trans. 97, 91–108 (2020)CrossRef
23.
Zurück zum Zitat Gabrielson, T.G.: Mechanical-thermal noise in micromachined acoustic and vibration sensors. Ieeexplore. IEEE Trans. Electronic, Dev (1993)CrossRef Gabrielson, T.G.: Mechanical-thermal noise in micromachined acoustic and vibration sensors. Ieeexplore. IEEE Trans. Electronic, Dev (1993)CrossRef
24.
Zurück zum Zitat Cao, L., Li, J., Liu, X., Sun, F.Y.: Research on an anchor point lever beam coupling type tuning fork micro-gyroscope. Int. J. Precis. Eng. Manuf. 21, 1099–1111 (2020)CrossRef Cao, L., Li, J., Liu, X., Sun, F.Y.: Research on an anchor point lever beam coupling type tuning fork micro-gyroscope. Int. J. Precis. Eng. Manuf. 21, 1099–1111 (2020)CrossRef
25.
Zurück zum Zitat Li, Z., Gao, S., Jin, L., Liu, H., Guan, Y., Peng, S.: Design and mechanical sensitivity analysis of a MEMS tuning fork gyroscope with an anchored leverage mechanism. Sensors (Basel). 19(16), 3455 (2019)CrossRef Li, Z., Gao, S., Jin, L., Liu, H., Guan, Y., Peng, S.: Design and mechanical sensitivity analysis of a MEMS tuning fork gyroscope with an anchored leverage mechanism. Sensors (Basel). 19(16), 3455 (2019)CrossRef
26.
Zurück zum Zitat Bukhari, S.A.R., Saleem, M.M., Hamza, A., Bazaz, S.A.: A novel design of high resolution MEMS gyroscope using mode-localization in weakly coupled resonators. IEEE Access 9, 157597–157608 (2021)CrossRef Bukhari, S.A.R., Saleem, M.M., Hamza, A., Bazaz, S.A.: A novel design of high resolution MEMS gyroscope using mode-localization in weakly coupled resonators. IEEE Access 9, 157597–157608 (2021)CrossRef
Metadaten
Titel
Parametric Tuning of Natural Frequencies of Tuning Fork Gyroscope
verfasst von
Rakesha Chandra Dash
Rakesh Tirupathi
P. Krishna Menon
Ashok Kumar Pandey
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-20353-4_12

Neuer Inhalt