Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

PART-GAN: Privacy-Preserving Time-Series Sharing

verfasst von: Shuo Wang, Carsten Rudolph, Surya Nepal, Marthie Grobler, Shangyu Chen

Erschienen in: Artificial Neural Networks and Machine Learning – ICANN 2020

Verlag: Springer International Publishing

share
TEILEN

Abstract

In this paper, we provide a practical privacy-preserving generative model for time series data augmentation and sharing, called PART-GAN. Our model enables the local data curator to provide a freely accessible public generative model derived from original data for cloud storage. Compared with existing approaches, PART-GAN has three key advantages: It enables the generation of an unlimited amount of synthetic time series data under the guidance of a given classification label and addresses the incomplete and temporal irregularity issues. It provides a robust privacy guarantee that satisfies differential privacy to time series data augmentation and sharing. It addresses the trade-offs between utility and privacy by applying optimization strategies. We evaluate and report the utility and efficacy of PART-GAN through extensive empirical evaluations of real-world health/medical datasets. Even at a higher level of privacy protection, our method outperforms GAN with ordinary perturbation. It achieves similar performance with GAN without perturbation in terms of inception score, machine learning score similarity, and distance-based evaluations.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016) Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016)
3.
Zurück zum Zitat Arora, S., Ge, R., Neyshabur, B., Zhang, Y.: Stronger generalization bounds for deep nets via a compression approach. arXiv preprint arXiv:​1802.​05296 (2018) Arora, S., Ge, R., Neyshabur, B., Zhang, Y.: Stronger generalization bounds for deep nets via a compression approach. arXiv preprint arXiv:​1802.​05296 (2018)
4.
Zurück zum Zitat Cynthia, D.: Differential privacy. In: Automata, Languages and Programming, pp. 1–12 (2006) Cynthia, D.: Differential privacy. In: Automata, Languages and Programming, pp. 1–12 (2006)
6.
Zurück zum Zitat Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014) MathSciNetMATH Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014) MathSciNetMATH
7.
Zurück zum Zitat Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs. arXiv preprint arXiv:​1706.​02633 (2017) Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs. arXiv preprint arXiv:​1706.​02633 (2017)
8.
Zurück zum Zitat Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017) Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
9.
Zurück zum Zitat Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:​1710.​10196 (2017) Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:​1710.​10196 (2017)
10.
Zurück zum Zitat Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1885–1894. JMLR. org (2017) Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1885–1894. JMLR. org (2017)
11.
12.
Zurück zum Zitat Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015)
14.
Zurück zum Zitat Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational bayes: unifying variational autoencoders and generative adversarial networks. arXiv preprint arXiv:​1701.​04722 (2017) Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational bayes: unifying variational autoencoders and generative adversarial networks. arXiv preprint arXiv:​1701.​04722 (2017)
16.
Zurück zum Zitat Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2642–2651. JMLR. org (2017) Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2642–2651. JMLR. org (2017)
17.
Zurück zum Zitat Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., Kim, Y.: Data synthesis based on generative adversarial networks. Proc. VLDB Endow. 11(10), 1071–1083 (2018) CrossRef Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., Kim, Y.: Data synthesis based on generative adversarial networks. Proc. VLDB Endow. 11(10), 1071–1083 (2018) CrossRef
18.
Zurück zum Zitat Ramponi, G., Protopapas, P., Brambilla, M., Janssen, R.: T-CGAN: conditional generative adversarial network for data augmentation in noisy time series with irregular sampling. arXiv preprint arXiv:​1811.​08295 (2018) Ramponi, G., Protopapas, P., Brambilla, M., Janssen, R.: T-CGAN: conditional generative adversarial network for data augmentation in noisy time series with irregular sampling. arXiv preprint arXiv:​1811.​08295 (2018)
19.
Zurück zum Zitat Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016) Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)
20.
Zurück zum Zitat Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for eeg decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017) CrossRef Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for eeg decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017) CrossRef
21.
Zurück zum Zitat Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially private updates. In: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 245–248. IEEE (2013) Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially private updates. In: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 245–248. IEEE (2013)
22.
Zurück zum Zitat Wang, Q., Zhang, Y., Lu, X., Wang, Z., Qin, Z., Ren, K.: Real-time and spatio-temporal crowd-sourced social network data publishing with differential privacy. IEEE Trans. Dependable Secure Comput. 15, 591–606 (2016) Wang, Q., Zhang, Y., Lu, X., Wang, Z., Qin, Z., Ren, K.: Real-time and spatio-temporal crowd-sourced social network data publishing with differential privacy. IEEE Trans. Dependable Secure Comput. 15, 591–606 (2016)
23.
Zurück zum Zitat Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative adversarial network. arXiv preprint arXiv:​1802.​06739 (2018) Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative adversarial network. arXiv preprint arXiv:​1802.​06739 (2018)
Metadaten
Titel
PART-GAN: Privacy-Preserving Time-Series Sharing
verfasst von
Shuo Wang
Carsten Rudolph
Surya Nepal
Marthie Grobler
Shangyu Chen
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-61609-0_46

Premium Partner