Skip to main content

2015 | OriginalPaper | Buchkapitel

14. Partial Differential Equation Approach Under Geometric Jump-Diffusion Process

verfasst von : Carl Chiarella, Xue-Zhong He, Christina Sklibosios Nikitopoulos

Erschienen in: Derivative Security Pricing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we consider the solution of the integro-partial differential equation that determines derivative security prices when the underlying asset price is driven by a jump-diffusion process. We take the analysis as far as we can for the case of a European option with a general pay-off and the jump-size distribution is left unspecified. We obtain specific results in the case of a European call option and when the jump size distribution is log-normal. We illustrate two approaches to the problem. The first is the Fourier transform technique that we have used in the case that the underlying asset follows a diffusion process. The second is the direct approach using the expectation operator expression that follows from the martingale representation. We also show how these two approaches are connected.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We note that
$$\displaystyle{\frac{\partial f} {\partial x} = \frac{1} {x} \frac{\partial F} {\partial u},\qquad \frac{\partial ^{2}f} {\partial x^{2}} = - \frac{1} {x^{2}} \frac{\partial F} {\partial u} + \frac{1} {x^{2}} \frac{\partial ^{2}F} {\partial u^{2}} = \frac{1} {x^{2}}\left (\frac{\partial ^{2}F} {\partial u^{2}} -\frac{\partial F} {\partial u} \right ),}$$
and f(xY, τ) = F(ln(xY ), τ) = F(u + lnY, τ).
 
2
See (12.​15).
 
3
Referring to (14.35) we see that
$$\displaystyle\begin{array}{rcl} v^{2} -\frac{\beta _{1}^{2}} {4\alpha } & =& v^{2} -\frac{n\left (v^{2}\delta ^{4} - 2v\delta ^{2}\sigma \sqrt{\tau }(\gamma +\frac{\delta ^{2}} {2} ) +\sigma ^{2}\tau (\gamma +\frac{\delta ^{2}} {2} )^{2}\right )} {\delta ^{2}(\sigma ^{2}\tau +\delta ^{2}n)} {}\\ & =& \frac{\sigma ^{2}\tau v^{2} + 2n\sigma \sqrt{\tau }(\gamma +\frac{\delta ^{2}} {2} )v} {\sigma ^{2}\tau +\delta ^{2}n} - \frac{\sigma ^{2}\tau n(\gamma +\frac{\delta ^{2}} {2} )^{2}} {\delta ^{2}(\sigma ^{2}\tau +\delta ^{2}n)} {}\\ & =& \frac{\left (\sigma \sqrt{\tau }v + n(\gamma +\frac{\delta ^{2}} {2} )\right )^{2}} {\sigma ^{2}\tau +\delta ^{2}n} -\frac{n^{2}(\gamma +\frac{\delta ^{2}} {2} )^{2}} {\sigma ^{2}\tau +\delta ^{2}n} - \frac{\sigma ^{2}\tau n(\gamma +\frac{\delta ^{2}} {2} )^{2}} {\delta ^{2}(\sigma ^{2}\tau +\delta ^{2}n)}. {}\\ \end{array}$$
 
4
We note that
$$\displaystyle\begin{array}{rcl} v^{2} -\frac{\beta _{2}^{2}} {4\alpha } & =& \frac{\sigma ^{2}\tau v^{2} + 2\sigma \sqrt{\tau }n(\gamma -\frac{\delta ^{2}} {2} )v} {\sigma ^{2}\tau +\delta ^{2}n} - \frac{\sigma ^{2}\tau n(\gamma -\frac{\delta ^{2}} {2} )^{2}} {\delta ^{2}(\sigma ^{2}\tau +\delta ^{2}n)} {}\\ & =& \frac{\left (\sigma \sqrt{\tau }v + n(\gamma -\frac{\delta ^{2}} {2} )\right )^{2}} {\sigma ^{2}\tau +\delta ^{2}n} -\frac{n(\gamma -\frac{\delta ^{2}} {2} )^{2}} {\delta ^{2}}. {}\\ \end{array}$$
 
Metadaten
Titel
Partial Differential Equation Approach Under Geometric Jump-Diffusion Process
verfasst von
Carl Chiarella
Xue-Zhong He
Christina Sklibosios Nikitopoulos
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45906-5_14