Skip to main content
Erschienen in: Designs, Codes and Cryptography 3/2018

20.02.2017

Partial permutation decoding for binary linear and \(Z_4\)-linear Hadamard codes

verfasst von: Roland D. Barrolleta, Mercè Villanueva

Erschienen in: Designs, Codes and Cryptography | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, s-\({\text {PD}}\)-sets of minimum size \(s+1\) for partial permutation decoding for the binary linear Hadamard code \(H_m\) of length \(2^m\), for all \(m\ge 4\) and \(2 \le s \le \lfloor {\frac{2^m}{1+m}}\rfloor -1\), are constructed. Moreover, recursive constructions to obtain s-\({\text {PD}}\)-sets of size \(l\ge s+1\) for \(H_{m+1}\) of length \(2^{m+1}\), from an s-\({\text {PD}}\)-set of the same size for \(H_m\), are also described. These results are generalized to find s-\({\text {PD}}\)-sets for the \({\mathbb {Z}}_4\)-linear Hadamard codes \(H_{\gamma , \delta }\) of length \(2^m\), \(m=\gamma +2\delta -1\), which are binary Hadamard codes (not necessarily linear) obtained as the Gray map image of quaternary linear codes of type \(2^\gamma 4^\delta \). Specifically, s-PD-sets of minimum size \(s+1\) for \(H_{\gamma , \delta }\), for all \(\delta \ge 3\) and \(2\le s \le \lfloor {\frac{2^{2\delta -2}}{\delta }}\rfloor -1\), are constructed and recursive constructions are described.
Literatur
1.
Zurück zum Zitat Barrolleta R.D., Villanueva M.: Partial permutation decoding for binary linear Hadamard codes. Electron. Note Discret. Math. 46, 35–42 (2014).MathSciNetCrossRefMATH Barrolleta R.D., Villanueva M.: Partial permutation decoding for binary linear Hadamard codes. Electron. Note Discret. Math. 46, 35–42 (2014).MathSciNetCrossRefMATH
2.
Zurück zum Zitat Bernal J.J., Borges J., Fernández-Córboda C., Villanueva M.: Permutation decoding of \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes. Des. Codes Cryptogr. 76(2), 269–277 (2015).MathSciNetCrossRef Bernal J.J., Borges J., Fernández-Córboda C., Villanueva M.: Permutation decoding of \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes. Des. Codes Cryptogr. 76(2), 269–277 (2015).MathSciNetCrossRef
3.
Zurück zum Zitat Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \({{\mathbb{Z}}_{2}{\mathbb{Z}}_{4}}\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010).MathSciNetCrossRefMATH Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \({{\mathbb{Z}}_{2}{\mathbb{Z}}_{4}}\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010).MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bosma W., Cannon J.J., Fieker C., Steel A. (eds.): Handbook of Magma Functions, 2.22nd edn. (2016). Bosma W., Cannon J.J., Fieker C., Steel A. (eds.): Handbook of Magma Functions, 2.22nd edn. (2016).
5.
6.
7.
Zurück zum Zitat Hammons Jr. A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).MathSciNetCrossRefMATH Hammons Jr. A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).MathSciNetCrossRefMATH
8.
Zurück zum Zitat Huffman W.C.: Codes and groups. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998). Huffman W.C.: Codes and groups. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998).
9.
Zurück zum Zitat Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefMATH Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefMATH
10.
Zurück zum Zitat Key J.D., McDonough T.P., Mavron V.C.: Reed–Muller codes and permutation decoding. Discret. Math. 310(22), 3114–3119 (2010).MathSciNetCrossRefMATH Key J.D., McDonough T.P., Mavron V.C.: Reed–Muller codes and permutation decoding. Discret. Math. 310(22), 3114–3119 (2010).MathSciNetCrossRefMATH
11.
Zurück zum Zitat Key J.D., McDonough T.P., Mavron V.C.: Improved partial permutation decoding for Reed–Muller codes. Discret. Math. 340(4), 722–728 (2017).MathSciNetCrossRefMATH Key J.D., McDonough T.P., Mavron V.C.: Improved partial permutation decoding for Reed–Muller codes. Discret. Math. 340(4), 722–728 (2017).MathSciNetCrossRefMATH
12.
Zurück zum Zitat Kroll H.-J., Vincenti R.: PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of PG (5,2). Discret. Math. 308(2–3), 408–414 (2008).MathSciNetCrossRefMATH Kroll H.-J., Vincenti R.: PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of PG (5,2). Discret. Math. 308(2–3), 408–414 (2008).MathSciNetCrossRefMATH
13.
Zurück zum Zitat Krotov D.S.: \({{\mathbb{Z}}_4}\)-linear Hadamard and extended perfect codes. Electron. Note Discret. Math. 6, 107–112 (2001).CrossRef Krotov D.S.: \({{\mathbb{Z}}_4}\)-linear Hadamard and extended perfect codes. Electron. Note Discret. Math. 6, 107–112 (2001).CrossRef
14.
Zurück zum Zitat Krotov D.S., Villanueva M.: Classification of the \({{\mathbb{Z}}_2{\mathbb{Z}}_4}\)-linear Hadamard codes and their automorphism groups. IEEE Trans. Inf. Theory 61(2), 887–894 (2015).CrossRefMATH Krotov D.S., Villanueva M.: Classification of the \({{\mathbb{Z}}_2{\mathbb{Z}}_4}\)-linear Hadamard codes and their automorphism groups. IEEE Trans. Inf. Theory 61(2), 887–894 (2015).CrossRefMATH
15.
Zurück zum Zitat MacWilliams F.J.: Permutation decoding of systematics codes. Bell Syst. Tech. J. 43, 485–505 (1964).CrossRefMATH MacWilliams F.J.: Permutation decoding of systematics codes. Bell Syst. Tech. J. 43, 485–505 (1964).CrossRefMATH
16.
Zurück zum Zitat MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1977).MATH MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1977).MATH
17.
Zurück zum Zitat Pernas J., Pujol J., Villanueva M.: Characterization of the automorphism group of quaternary linear Hadamard codes. Des. Codes Cryptogr. 70(1–2), 105–115 (2014).MathSciNetCrossRefMATH Pernas J., Pujol J., Villanueva M.: Characterization of the automorphism group of quaternary linear Hadamard codes. Des. Codes Cryptogr. 70(1–2), 105–115 (2014).MathSciNetCrossRefMATH
18.
Zurück zum Zitat Phelps K.T., Rifà J., Villanueva M.: On the additive (\({{\mathbb{Z}}_4}\)-linear and non-\({{\mathbb{Z}}_4}\)-linear) Hadamard codes: rank and kernel. IEEE Trans. Inf. Theory 52(1), 316–319 (2006).MathSciNetCrossRefMATH Phelps K.T., Rifà J., Villanueva M.: On the additive (\({{\mathbb{Z}}_4}\)-linear and non-\({{\mathbb{Z}}_4}\)-linear) Hadamard codes: rank and kernel. IEEE Trans. Inf. Theory 52(1), 316–319 (2006).MathSciNetCrossRefMATH
19.
21.
Zurück zum Zitat Seneviratne P.: Partial permutation decoding for the first-order Reed–Muller codes. Discret. Math. 309(8), 1967–1970 (2009).MathSciNetCrossRefMATH Seneviratne P.: Partial permutation decoding for the first-order Reed–Muller codes. Discret. Math. 309(8), 1967–1970 (2009).MathSciNetCrossRefMATH
22.
Zurück zum Zitat Wolfmann J.: A permutation decoding of the (24,12,8) Golay code. IEEE Trans. Inf. Theory 29(5), 748–750 (1983).CrossRefMATH Wolfmann J.: A permutation decoding of the (24,12,8) Golay code. IEEE Trans. Inf. Theory 29(5), 748–750 (1983).CrossRefMATH
Metadaten
Titel
Partial permutation decoding for binary linear and -linear Hadamard codes
verfasst von
Roland D. Barrolleta
Mercè Villanueva
Publikationsdatum
20.02.2017
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 3/2018
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-017-0342-8

Weitere Artikel der Ausgabe 3/2018

Designs, Codes and Cryptography 3/2018 Zur Ausgabe