Skip to main content
Erschienen in: Experimental Mechanics 6/2022

17.05.2022 | Research paper

Particle-Assisted Laser-Induced Inertial Cavitation for High Strain-Rate Soft Material Characterization

Erschienen in: Experimental Mechanics | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

While there are few reliable techniques for characterizing highly compliant and viscoelastic materials under large deformations, laser-induced Inertial Microcavitaton Rheometry (IMR) was recently developed to fill this void and to characterize soft materials at high to ultra-high strain rates (\(O(10^{3}) \sim O(10^{8})\) s\(^{-1}\)). Yet, one of the current limitations in IMR has been the dependence of the cavitation nucleation physics on the intrinsic material properties often generating extreme deformation levels and thus complicating material characterization procedures.

Objective

The objective of this study was to develop an experimental approach for modulating laser-induced cavitation (LIC) bubble amplitudes and their resulting maximum material deformations. Lowering the material stretch ratios during inertial cavitation will provide an experimental platform of broad applicability to a large class of polymeric materials and environmental conditions.

Methods

Experimental methods include using three types of micron-sized nucleation seed particles and varying laser energies in polyacrylamide hydrogels of known concentration. Using a Quadratic law Kelvin-Voigt material model, we implemented ensemble-based data assimilation (DA) techniques to robustly quantify the nonlinear constitutive material parameters, up through the first, second, and third bubble collapse cycles. Fitted values were then used to simulate bubble dynamics to compute critical bubble collapse Mach numbers, and to assess time-varying uncertainties of the full cavitation dynamics with respect to the current state-of-the art theoretical model featured in the IMR model.

Results

While varying laser energy modulated bubble amplitude, seed particles successfully expanded (more than doubled) the finite deformation regime (i.e., maximum material stretch, \(\lambda _{max} \approx\) 4 - 9). Comparing experimental data to IMR simulations, we found that fitting beyond the first bubble collapse, as well as increasing laser energy, increased the bubble radius fit error, and larger \(\lambda _{max}\) values exhibited increasingly violent bubble behavior (marked by increasing collapse Mach numbers greater than 0.08). Additionally, time-varying analysis showed the greatest model uncertainty during initial bubble collapse, where bubbles nucleated at lower laser energies and resulting \(\lambda _{max}\) had less uncertainty at collapse compared to higher laser energy and \(\lambda _{max}\) cases.

Conclusions

This study indicates IMR’s current theoretical framework might be lacking important additional cavitation and/or material physics. However, expanding the finite deformation regime of soft materials to attain lower stretch regimes enables broader applicability to a larger class of soft polymeric materials and will enable future, systematic development and incorporation of more complex physics and constitutive models including damage and failure mechanisms into the theoretical framework of IMR.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The governing equations inside the bubble, i.e., the balances of mass and energy, are discretized using 1000 grid points.
 
Literatur
3.
Zurück zum Zitat Gent A, Wang C (1991) Fracture mechanics and cavitation in rubber-like solids. J Mater Sci 26(12):3392–3395CrossRef Gent A, Wang C (1991) Fracture mechanics and cavitation in rubber-like solids. J Mater Sci 26(12):3392–3395CrossRef
4.
Zurück zum Zitat Barney CW, Dougan CE, McLeod KR, Kazemi-Moridani A, Zheng Y, Ye Z, Tiwari S, Sacligil I, Riggleman RA, Cai S et al (2020) Cavitation in soft matter. Proc Natl Acad Sci 117(17):9157–9165MathSciNetCrossRef Barney CW, Dougan CE, McLeod KR, Kazemi-Moridani A, Zheng Y, Ye Z, Tiwari S, Sacligil I, Riggleman RA, Cai S et al (2020) Cavitation in soft matter. Proc Natl Acad Sci 117(17):9157–9165MathSciNetCrossRef
5.
Zurück zum Zitat Hashemnejad SM, Kundu S (2015) Nonlinear elasticity and cavitation of a triblock copolymer gel. Soft Matter 11(21):4315–4325CrossRef Hashemnejad SM, Kundu S (2015) Nonlinear elasticity and cavitation of a triblock copolymer gel. Soft Matter 11(21):4315–4325CrossRef
6.
Zurück zum Zitat Hutchens SB, Fakhouri S, Crosby AJ (2016) Elastic cavitation and fracture via injection. Soft Matter 12(9):2557–2566CrossRef Hutchens SB, Fakhouri S, Crosby AJ (2016) Elastic cavitation and fracture via injection. Soft Matter 12(9):2557–2566CrossRef
7.
Zurück zum Zitat López-Fagundo C, Bar-Kochba E, Livi LL, Hoffman-Kim D, Franck C (2014) Three-dimensional traction forces of schwann cells on compliant substrates. J R Soc Interface 11(97):20140247CrossRef López-Fagundo C, Bar-Kochba E, Livi LL, Hoffman-Kim D, Franck C (2014) Three-dimensional traction forces of schwann cells on compliant substrates. J R Soc Interface 11(97):20140247CrossRef
8.
Zurück zum Zitat Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13(10):2805–2819CrossRef Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13(10):2805–2819CrossRef
9.
Zurück zum Zitat Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68(2):628–633CrossRef Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68(2):628–633CrossRef
10.
Zurück zum Zitat Nigmatulin R, Khabeev N, Nagiev F (1981) Dynamics, heat and mass transfer of vapour-gas bubbles in a liquid. Int J Heat Mass Transf 24(6):1033–1044CrossRef Nigmatulin R, Khabeev N, Nagiev F (1981) Dynamics, heat and mass transfer of vapour-gas bubbles in a liquid. Int J Heat Mass Transf 24(6):1033–1044CrossRef
11.
Zurück zum Zitat Barajas C, Johnsen E (2017) The effects of heat and mass diffusion on freely oscillating bubbles in a viscoelastic, tissue-like medium. J Acoust Soc Am 141(2):908–918CrossRef Barajas C, Johnsen E (2017) The effects of heat and mass diffusion on freely oscillating bubbles in a viscoelastic, tissue-like medium. J Acoust Soc Am 141(2):908–918CrossRef
12.
Zurück zum Zitat Vincent O, Marmottant P, Gonzalez-Avila SR, Ando K, Ohl CD (2014) The fast dynamics of cavitation bubbles within water confined in elastic solids. Soft Matter 10(10):1455–1461CrossRef Vincent O, Marmottant P, Gonzalez-Avila SR, Ando K, Ohl CD (2014) The fast dynamics of cavitation bubbles within water confined in elastic solids. Soft Matter 10(10):1455–1461CrossRef
14.
15.
Zurück zum Zitat Spratt JS, Rodriguez M, Schmidmayer K, Bryngelson SH, Yang J, Franck C, Colonius T (2021) Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations. J Mech Phys Solids 104455 Spratt JS, Rodriguez M, Schmidmayer K, Bryngelson SH, Yang J, Franck C, Colonius T (2021) Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations. J Mech Phys Solids 104455
16.
Zurück zum Zitat Evensen G, van Leeuwen PJ (2000) An ensemble Kalman smoother for nonlinear dynamics. Mon Weather Rev 128:1852–1867CrossRef Evensen G, van Leeuwen PJ (2000) An ensemble Kalman smoother for nonlinear dynamics. Mon Weather Rev 128:1852–1867CrossRef
21.
Zurück zum Zitat Vogel A, Nahen K, Theisen D, Noack J (1996) Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. I. Optical breakdown at threshold and superthreshold irradiance. IEEE J Sel Top Quantum Electron 2(4):847–860 Vogel A, Nahen K, Theisen D, Noack J (1996) Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. I. Optical breakdown at threshold and superthreshold irradiance. IEEE J Sel Top Quantum Electron 2(4):847–860
22.
Zurück zum Zitat Sacchi C (1991) Laser-induced electric breakdown in water. JOSA B 8(2):337–345CrossRef Sacchi C (1991) Laser-induced electric breakdown in water. JOSA B 8(2):337–345CrossRef
23.
Zurück zum Zitat Kennedy PK (1995) A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE J Quantum Electron 31(12):2241–2249CrossRef Kennedy PK (1995) A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE J Quantum Electron 31(12):2241–2249CrossRef
24.
Zurück zum Zitat Anderson JD (2009) Fundamentals of aerodynamics. McGraw Anderson JD (2009) Fundamentals of aerodynamics. McGraw 
25.
Zurück zum Zitat Rayleigh L (1917) VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98 Rayleigh L (1917) VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98
26.
Zurück zum Zitat Plesset M (1948) Dynamics of cavitation bubbles. J Appl Mech 16:228–231 Plesset M (1948) Dynamics of cavitation bubbles. J Appl Mech 16:228–231
27.
Zurück zum Zitat Murakami K (2020) Spherical and non-spherical bubble dynamics in soft matter. Ph.D. thesis, University of Michigan Murakami K (2020) Spherical and non-spherical bubble dynamics in soft matter. Ph.D. thesis, University of Michigan
Metadaten
Titel
Particle-Assisted Laser-Induced Inertial Cavitation for High Strain-Rate Soft Material Characterization
Publikationsdatum
17.05.2022
Erschienen in
Experimental Mechanics / Ausgabe 6/2022
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-022-00861-7

Weitere Artikel der Ausgabe 6/2022

Experimental Mechanics 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.