Skip to main content

2025 | OriginalPaper | Buchkapitel

Particle Breakage Prediction of Coral Sand Using Machine Learning Method

verfasst von : Xue Li, Wan-Huan Zhou, Chao Wang

Erschienen in: Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Volume 6

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding the mechanical behavior of granular materials is of paramount importance in various geotechnical applications. Coral sand, a naturally occurring sediment composed of broken coral fragments, plays a crucial role in marine engineering. However, characterizing and predicting the breakage behavior remain challenging due to its complex and heterogeneous nature. At current work, a set of one-dimensional compression tests were carried out considering varying initial conditions. Four machine learning (ML) algorithms (random forest, linear regression, fully connected neural network, and eXtreme Gradient Boosting) were adopted to predict particle breakage ratio. The initial loading stress, fines content, density state, grain size, coefficient of uniformity, and curvature coefficient were considered as variables for regression and classification. Relative particle breakage ratio was set as output feature. The dataset was divided into 25 and 75% as the test and training sets, respectively. Test results show that high stress, lower fines content, smaller relative density, and larger grain can lead to remarkable particle breakage. ML analysis suggests that both random forest and eXtreme Gradient Boosting achieved remarkable accuracy levels, exceeding 99%. However, linear regression, with a root mean squared error of 0.041, presented poor performance for particle breakage prediction. The developed approach can be used to evaluate the particle breakage with an acceptable breakage modeling accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li X, Liu J, Sun Z (2023) Shear strength-dilation characteristics of coral sand contained fines. Bull Eng Geol Environ 82(9) Li X, Liu J, Sun Z (2023) Shear strength-dilation characteristics of coral sand contained fines. Bull Eng Geol Environ 82(9)
2.
Zurück zum Zitat Li X, Liu J, Nan J (2022) Prediction of dynamic pore water pressure for calcareous sand mixed with fine-grained soil under cyclic loading. Soil Dyn Earthq Eng 157:107276CrossRef Li X, Liu J, Nan J (2022) Prediction of dynamic pore water pressure for calcareous sand mixed with fine-grained soil under cyclic loading. Soil Dyn Earthq Eng 157:107276CrossRef
3.
Zurück zum Zitat Wang X, Cui J, Zhu C (2021) Experimental study of the mechanical behavior of calcareous sand under repeated loading-unloading. Bull Eng Geol Environ 80(4):3097–3113CrossRef Wang X, Cui J, Zhu C (2021) Experimental study of the mechanical behavior of calcareous sand under repeated loading-unloading. Bull Eng Geol Environ 80(4):3097–3113CrossRef
4.
Zurück zum Zitat Shahnazari H, Tutunchian MA, Rezvani R (2013) Evolutionary-based approaches for determining the deviatoric stress of calcareous sands. Comput Geosci 50:84–94CrossRef Shahnazari H, Tutunchian MA, Rezvani R (2013) Evolutionary-based approaches for determining the deviatoric stress of calcareous sands. Comput Geosci 50:84–94CrossRef
5.
Zurück zum Zitat Li X, Liu J (2021) One-dimensional compression feature and particle crushability behavior of dry calcareous sand considering fine-grained soil content and relative compaction. Bull Eng Geol Environ 80(5):4049–4065CrossRef Li X, Liu J (2021) One-dimensional compression feature and particle crushability behavior of dry calcareous sand considering fine-grained soil content and relative compaction. Bull Eng Geol Environ 80(5):4049–4065CrossRef
6.
Zurück zum Zitat Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192CrossRef Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192CrossRef
7.
Zurück zum Zitat Shen J, Chen X, Wang X (2023) Compression responses and particle breakage of calcareous granular material in reclaimed islands. Powder Technol 418:118277CrossRef Shen J, Chen X, Wang X (2023) Compression responses and particle breakage of calcareous granular material in reclaimed islands. Powder Technol 418:118277CrossRef
8.
Zurück zum Zitat Xiao Y, Liu H, Chen Q (2017) Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech 12(5):1177–1184CrossRef Xiao Y, Liu H, Chen Q (2017) Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech 12(5):1177–1184CrossRef
9.
Zurück zum Zitat Andy Liaw MW (2002) Classification and regression by random forest. R news 2(3):18–22 Andy Liaw MW (2002) Classification and regression by random forest. R news 2(3):18–22
10.
Zurück zum Zitat Kong X, Ling X, Tang L (2022) Random forest-based predictors for driving forces of Earth Pressure Balance (EPB) Shield Tunnel Boring Machine (TBM). Tunn Undergr Space Technol 122:104373CrossRef Kong X, Ling X, Tang L (2022) Random forest-based predictors for driving forces of Earth Pressure Balance (EPB) Shield Tunnel Boring Machine (TBM). Tunn Undergr Space Technol 122:104373CrossRef
Metadaten
Titel
Particle Breakage Prediction of Coral Sand Using Machine Learning Method
verfasst von
Xue Li
Wan-Huan Zhou
Chao Wang
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8233-8_26