Skip to main content
Erschienen in: Cellulose 3/2021

06.01.2021 | Original Research

Particle size distributions for cellulose nanocrystals measured by atomic force microscopy: an interlaboratory comparison

verfasst von: Michael Bushell, Juris Meija, Maohui Chen, Warren Batchelor, Christine Browne, Jae-Young Cho, Charles A. Clifford, Zeinab Al-Rekabi, Oriana M. Vanderfleet, Emily D. Cranston, Malcolm Lawn, Victoria A. Coleman, Gustav Nyström, Mario Arcari, Raffaele Mezzenga, Byong Chon Park, ChaeHo Shin, Lingling Ren, Tianjia Bu, Tsuguyuki Saito, Yuto Kaku, Ryan Wagner, Linda J. Johnston

Erschienen in: Cellulose | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Particle size measurements of cellulose nanocrystals (CNCs) are challenging due to their broad size distribution, irregular shape and propensity to agglomerate. Particle size is one of the key parameters that must be measured for quality control purposes and to differentiate materials with different properties. We report the results of an interlaboratory comparison (ILC) which examined atomic force microscopy (AFM) data acquisition and data analysis protocols. Samples of CNCs deposited on poly-L-lysine coated mica were prepared in the pilot laboratory and sent to 10 participating laboratories including academic, government and industrial organizations with varying levels of experience with imaging CNCs. The participant data sets indicated that the central location, width and asymmetry varied considerably for both length and height distributions. To deal with this variability we used a skew normal distribution to model the data from each laboratory and to obtain the consensus distribution that describes the CNC particle size. The skew normal distribution has 3 parameters: a central location (mean), distribution width (standard deviation) and asymmetry (shape) factor. This approach gave consensus distributions with mean, standard deviation and asymmetry factor of 94.9 nm, 37.3 nm and 6.0 for length and 3.4 nm, 1.2 nm and 2.8 for height, respectively. The use of multiple probes and/or deterioration of the probe with increased use are significant contributing factors to the variability in mean length between laboratories. There is less variability in height across participating laboratories and tests of applied imaging force indicate that it is possible to image without significant compression of the CNCs. The number of CNCs necessary to obtain a reliable data set depends on the probes and operating conditions, but with careful control of various parameters analysis of 250 and 300 CNCs should provide consistent data sets for height and length, respectively for one sample. Comparison of AFM with transmission electron microscopy (TEM) data obtained in the same ILC demonstrated excellent agreement between measured lengths for the 2 methods. By contrast AFM height was approximately one half the TEM width, a result that indicates the presence of a significant number of laterally agglomerated particles, consistent with literature data.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Brito BSL, Pereira FV, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536CrossRef Brito BSL, Pereira FV, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536CrossRef
Zurück zum Zitat Chen M, Parot J, Hackley VA, Zou S, Johnston LJ (2020) AFM characterization of cellulose nanocrystal height and width using internal calibration standards. Cellulose submitted. Chen M, Parot J, Hackley VA, Zou S, Johnston LJ (2020) AFM characterization of cellulose nanocrystal height and width using internal calibration standards. Cellulose submitted.
Zurück zum Zitat Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chen KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. https://doi.org/10.1039/C6CS00895JCrossRefPubMed Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chen KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. https://​doi.​org/​10.​1039/​C6CS00895JCrossRefPubMed
Zurück zum Zitat Grulke EA, Yamamoto K, Kumagi K, Hausler I, Osterle W, Ortel E, Hodoroaba V-D, Brown SC, Chan C, Zheng J, Yamamoto K, Yashiki K, Song NW, Kim YH, Stefaniak AB, Schwegler-Berry D, Coleman VA, Jamting AK, Hermann J, Arakawa T, Burchett WW, Lambert JW, Stromberg AJ (2017) Size and shape distributions of primary crystallites in titania aggregates. Adv Powder Tech 28:1647–1659. https://doi.org/10.1016/j.apt.2017.03.027CrossRef Grulke EA, Yamamoto K, Kumagi K, Hausler I, Osterle W, Ortel E, Hodoroaba V-D, Brown SC, Chan C, Zheng J, Yamamoto K, Yashiki K, Song NW, Kim YH, Stefaniak AB, Schwegler-Berry D, Coleman VA, Jamting AK, Hermann J, Arakawa T, Burchett WW, Lambert JW, Stromberg AJ (2017) Size and shape distributions of primary crystallites in titania aggregates. Adv Powder Tech 28:1647–1659. https://​doi.​org/​10.​1016/​j.​apt.​2017.​03.​027CrossRef
Zurück zum Zitat Johnston LJ, Jakubek ZJ, Beck S, Araki J, Cranston ED, Danumah C, Fox D, Li H, Wang J, Mester Z, Moores A, Murphy K, Rabb SA, Rudie A, Stephan C, (2018) Determination of sulfur and sulfate half-ester content in cellulose nanocrystals: an interlaboratory comparison. Metrologia 55:872–882. https://doi.org/10.1088/1681-7575/aaeb60CrossRef Johnston LJ, Jakubek ZJ, Beck S, Araki J, Cranston ED, Danumah C, Fox D, Li H, Wang J, Mester Z, Moores A, Murphy K, Rabb SA, Rudie A, Stephan C, (2018) Determination of sulfur and sulfate half-ester content in cellulose nanocrystals: an interlaboratory comparison. Metrologia 55:872–882. https://​doi.​org/​10.​1088/​1681-7575/​aaeb60CrossRef
Zurück zum Zitat Kaushik M, Fraschini C, Chauve G, Putaux J-L, Moores A (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed) The transmission electron microscope-theory and applications. Intech. https://doi.org/10.5772/59457CrossRef Kaushik M, Fraschini C, Chauve G, Putaux J-L, Moores A (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed) The transmission electron microscope-theory and applications. Intech. https://​doi.​org/​10.​5772/​59457CrossRef
Zurück zum Zitat Lin H-L, Fu W-E, Weng H-F, Misumi I, Sugawara K, Gonda S, Takahashi K, Takahata K, Ehara K, Takatsuji T, Fujimoto T, Salas J, Dirschel K, Garnæs KJ, Damasceno J, de Oliveira JCV, Emanuele E, Picotto GB, Kim CS, Cho SJ, Motzkus C, Meli F, Gao S, Shi Y, Liu J, Jamting K, Catchpoole HJ, Lawn MA, Herrmann J, Coleman VA, Adlem L, Kruger OA, Buajarern J, Buhr E, Danzebrink H-U, Krumrey M, Bosse H (2019) Nanoparticle characterization-supplementary comparison on nanoparticle size. Metrologia 56:04004. https://doi.org/10.1088/0026-1394/56/1A/04004CrossRef Lin H-L, Fu W-E, Weng H-F, Misumi I, Sugawara K, Gonda S, Takahashi K, Takahata K, Ehara K, Takatsuji T, Fujimoto T, Salas J, Dirschel K, Garnæs KJ, Damasceno J, de Oliveira JCV, Emanuele E, Picotto GB, Kim CS, Cho SJ, Motzkus C, Meli F, Gao S, Shi Y, Liu J, Jamting K, Catchpoole HJ, Lawn MA, Herrmann J, Coleman VA, Adlem L, Kruger OA, Buajarern J, Buhr E, Danzebrink H-U, Krumrey M, Bosse H (2019) Nanoparticle characterization-supplementary comparison on nanoparticle size. Metrologia 56:04004. https://​doi.​org/​10.​1088/​0026-1394/​56/​1A/​04004CrossRef
Zurück zum Zitat Meija J, Bushell M, Couillard M, Beck S, Bonevich J, Cui K, Foster J, Will J, Fox D, Cho W, Heidelmann M, Park BC, Park YC, Ren L, Xu L, Stefaniak A, Knepp AK, Theissmann R, Purwin H, Wang Z, de Val N, Johnston LJ (2020) Particle size distributions for cellulose nanocrystals measured by transmission electron microscopy: an interlaboratory comparison. Anal Chem 92:13434–13442. https://doi.org/10.1021/acs.analchem.0c02805CrossRefPubMed Meija J, Bushell M, Couillard M, Beck S, Bonevich J, Cui K, Foster J, Will J, Fox D, Cho W, Heidelmann M, Park BC, Park YC, Ren L, Xu L, Stefaniak A, Knepp AK, Theissmann R, Purwin H, Wang Z, de Val N, Johnston LJ (2020) Particle size distributions for cellulose nanocrystals measured by transmission electron microscopy: an interlaboratory comparison. Anal Chem 92:13434–13442. https://​doi.​org/​10.​1021/​acs.​analchem.​0c02805CrossRefPubMed
Zurück zum Zitat Moon RJ, Pohler T, Tammelin T (2014) Microscopic characterization of nanofibers and nanocrystals handbook of green materials. K Oksman, AP Mathew, A Bismarck, O Rojas, M Sain. Singapore, World Scientific, 1: 159–180, ISBN-13 : 978–9814566452 Moon RJ, Pohler T, Tammelin T (2014) Microscopic characterization of nanofibers and nanocrystals handbook of green materials. K Oksman, AP Mathew, A Bismarck, O Rojas, M Sain. Singapore, World Scientific, 1: 159–180, ISBN-13 : 978–9814566452
Zurück zum Zitat Petersen EJ, Montoro Bustos AR, Toman B, Johnson ME, Ellefson M, Caceres GC, Neuer AL, Chan Q, Kemling JW, Mader B, Murphy K, Roesslein M (2019) Determining what really counts: modeling and measuring nanoparticle number concentrations. Environ Sci: Nano 6:2876–2896. https://doi.org/10.1039/C9EN00462ACrossRef Petersen EJ, Montoro Bustos AR, Toman B, Johnson ME, Ellefson M, Caceres GC, Neuer AL, Chan Q, Kemling JW, Mader B, Murphy K, Roesslein M (2019) Determining what really counts: modeling and measuring nanoparticle number concentrations. Environ Sci: Nano 6:2876–2896. https://​doi.​org/​10.​1039/​C9EN00462ACrossRef
Metadaten
Titel
Particle size distributions for cellulose nanocrystals measured by atomic force microscopy: an interlaboratory comparison
verfasst von
Michael Bushell
Juris Meija
Maohui Chen
Warren Batchelor
Christine Browne
Jae-Young Cho
Charles A. Clifford
Zeinab Al-Rekabi
Oriana M. Vanderfleet
Emily D. Cranston
Malcolm Lawn
Victoria A. Coleman
Gustav Nyström
Mario Arcari
Raffaele Mezzenga
Byong Chon Park
ChaeHo Shin
Lingling Ren
Tianjia Bu
Tsuguyuki Saito
Yuto Kaku
Ryan Wagner
Linda J. Johnston
Publikationsdatum
06.01.2021
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2021
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03618-4

Weitere Artikel der Ausgabe 3/2021

Cellulose 3/2021 Zur Ausgabe