Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

21. Particle Swarm Methods

verfasst von: Konstantinos E. Parsopoulos

Erschienen in: Handbook of Heuristics

Verlag: Springer International Publishing

share
TEILEN

Abstract

Particle swarm optimization has gained increasing popularity in the past 15 years. Its effectiveness and efficiency has rendered it a valuable metaheuristic approach in various scientific fields where complex optimization problems appear. Its simplicity has made it accessible to the non-expert researchers, while the potential for easy adaptation of operators and integration of new procedures allows its application on a wide variety of problems with diverse characteristics. Additionally, its inherent decentralized nature allows easy parallelization, taking advantage of modern high-performance computer systems. The present work exposes the basic concepts of particle swarm optimization and presents a number of popular variants that opened new research directions by introducing novel ideas in the original model of the algorithm. The focus is placed on presenting the essential information of the algorithms rather than covering all the details. Also, a large number of references and sources is provided for further inquiry. Thus, the present text can serve as a starting point for researchers interested in the development and application of particle swarm optimization and its variants.
Literatur
1.
Zurück zum Zitat Abido MA (2010) Multiobjective particle swarm optimization with nondominated local and global sets. Nat Comput 9(3):747–766 MathSciNetMATHCrossRef Abido MA (2010) Multiobjective particle swarm optimization with nondominated local and global sets. Nat Comput 9(3):747–766 MathSciNetMATHCrossRef
2.
Zurück zum Zitat Agrawal S, Panigrahi BK, Tiwari MK (2008) Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Trans Evol Comput 12(5):529–541 CrossRef Agrawal S, Panigrahi BK, Tiwari MK (2008) Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Trans Evol Comput 12(5):529–541 CrossRef
3.
Zurück zum Zitat Ahmadi MA (2012) Neural network based unified particle swarm optimization for prediction of asphaltene precipitation. Fluid Phase Equilib 314:46–51 CrossRef Ahmadi MA (2012) Neural network based unified particle swarm optimization for prediction of asphaltene precipitation. Fluid Phase Equilib 314:46–51 CrossRef
4.
Zurück zum Zitat Aote AS, Raghuwanshi MM, Malik L (2013) A brief review on particle swarm optimization: limitations & future directions. Int J Comput Sci Eng 2(5):196–200 Aote AS, Raghuwanshi MM, Malik L (2013) A brief review on particle swarm optimization: limitations & future directions. Int J Comput Sci Eng 2(5):196–200
5.
Zurück zum Zitat Aziz M, Tayarani-N M-H (2014) An adaptive memetic particle swarm optimization algorithm for finding large-scale latin hypercube designs. Eng Appl Artif Intell 36:222–237 CrossRef Aziz M, Tayarani-N M-H (2014) An adaptive memetic particle swarm optimization algorithm for finding large-scale latin hypercube designs. Eng Appl Artif Intell 36:222–237 CrossRef
6.
Zurück zum Zitat Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part i: background and development. Nat Comput 6(4):467–484 MathSciNetMATHCrossRef Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part i: background and development. Nat Comput 6(4):467–484 MathSciNetMATHCrossRef
7.
Zurück zum Zitat Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124 MathSciNetMATHCrossRef Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124 MathSciNetMATHCrossRef
8.
Zurück zum Zitat T. Bartz-Beielstein, Blum D, Branke J (2007) Particle swarm optimization and sequential sampling in noisy environments. In: Doerner KF et al (ed) Metaheuristics: progress in complex systems optimization. Operations research/computer science interfaces series, vol 39. Springer, New York, pp 261–273 MATHCrossRef T. Bartz-Beielstein, Blum D, Branke J (2007) Particle swarm optimization and sequential sampling in noisy environments. In: Doerner KF et al (ed) Metaheuristics: progress in complex systems optimization. Operations research/computer science interfaces series, vol 39. Springer, New York, pp 261–273 MATHCrossRef
9.
Zurück zum Zitat Bin W, Qinke P, Jing Z, Xiao C (2012) A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior. Eur J Oper Res 219(2):224–233 MathSciNetMATHCrossRef Bin W, Qinke P, Jing Z, Xiao C (2012) A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior. Eur J Oper Res 219(2):224–233 MathSciNetMATHCrossRef
10.
Zurück zum Zitat Blackwell T (2012) A study of collapse in bare bones particle swarm optimization. IEEE Trans Evol Comput 16(3):354–372 CrossRef Blackwell T (2012) A study of collapse in bare bones particle swarm optimization. IEEE Trans Evol Comput 16(3):354–372 CrossRef
11.
Zurück zum Zitat Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput J 11(6):4135–4151 MATHCrossRef Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput J 11(6):4135–4151 MATHCrossRef
12.
Zurück zum Zitat Bonabeau E, Dorigo M, Théraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York MATH Bonabeau E, Dorigo M, Théraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York MATH
13.
Zurück zum Zitat Bonyadi MR, Michalewicz Z (2014) SPSO2011 – analysis of stability, local convergence, and rotation sensitivity. In: GECCO 2014 – proceedings of the 2014 genetic and evolutionary computation conference, Vancouver, pp 9–15 Bonyadi MR, Michalewicz Z (2014) SPSO2011 – analysis of stability, local convergence, and rotation sensitivity. In: GECCO 2014 – proceedings of the 2014 genetic and evolutionary computation conference, Vancouver, pp 9–15
14.
Zurück zum Zitat Camci F (2009) Comparison of genetic and binary particle swarm optimization algorithms on system maintenance scheduling using prognostics information. Eng Optim 41(2):119–136 CrossRef Camci F (2009) Comparison of genetic and binary particle swarm optimization algorithms on system maintenance scheduling using prognostics information. Eng Optim 41(2):119–136 CrossRef
15.
Zurück zum Zitat Chauhan P, Deep K, Pant M (2013) Novel inertia weight strategies for particle swarm optimization. Memet Comput 5(3):229–251 CrossRef Chauhan P, Deep K, Pant M (2013) Novel inertia weight strategies for particle swarm optimization. Memet Comput 5(3):229–251 CrossRef
16.
Zurück zum Zitat Chen C-H, Lin J, Yücesan E, Chick SE (2000) Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discr Event Dyn Syst Theory Appl 10(3):251–270 MathSciNetMATHCrossRef Chen C-H, Lin J, Yücesan E, Chick SE (2000) Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discr Event Dyn Syst Theory Appl 10(3):251–270 MathSciNetMATHCrossRef
17.
Zurück zum Zitat Chen J, Yang D, Feng Z (2012) A novel quantum particle swarm optimizer with dynamic adaptation. J Comput Inf Syst 8(12):5203–5210 Chen J, Yang D, Feng Z (2012) A novel quantum particle swarm optimizer with dynamic adaptation. J Comput Inf Syst 8(12):5203–5210
18.
Zurück zum Zitat Chen Z, He Z, Zhang C (2010) Particle swarm optimizer with self-adjusting neighborhoods. In: Proceedings of the 12th annual genetic and evolutionary computation conference (GECCO 2010), Portland, pp 909–916 Chen Z, He Z, Zhang C (2010) Particle swarm optimizer with self-adjusting neighborhoods. In: Proceedings of the 12th annual genetic and evolutionary computation conference (GECCO 2010), Portland, pp 909–916
20.
Zurück zum Zitat Clerc M (2012) Standard particle swarm optimization. Technical report 2012, Particle Swarm Central Clerc M (2012) Standard particle swarm optimization. Technical report 2012, Particle Swarm Central
21.
Zurück zum Zitat Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73 CrossRef Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73 CrossRef
22.
Zurück zum Zitat Coelho LdS (2008) A quantum particle swarm optimizer with chaotic mutation operator. Chaos Solitons Fractals 37(5):1409–1418 CrossRef Coelho LdS (2008) A quantum particle swarm optimizer with chaotic mutation operator. Chaos Solitons Fractals 37(5):1409–1418 CrossRef
23.
Zurück zum Zitat Coello Coello CA (1999) Self-adaptive penalties for GA-based optimization. In: Proceedings of the 1999 IEEE congress on evolutionary computation, Washington, vol 1, pp 573–580 Coello Coello CA (1999) Self-adaptive penalties for GA-based optimization. In: Proceedings of the 1999 IEEE congress on evolutionary computation, Washington, vol 1, pp 573–580
24.
Zurück zum Zitat Coello Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, New York MATHCrossRef Coello Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, New York MATHCrossRef
25.
Zurück zum Zitat Cooren Y, Clerc M, Siarry P (2008) Initialization and displacement of the particles in TRIBES, a parameter-free particle swarm optimization algorithm. Stud Comput Intell 136:199–219 Cooren Y, Clerc M, Siarry P (2008) Initialization and displacement of the particles in TRIBES, a parameter-free particle swarm optimization algorithm. Stud Comput Intell 136:199–219
26.
Zurück zum Zitat Cooren Y, Clerc M, Siarry P (2009) Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm. Swarm Intell 3(2):149–178 MATHCrossRef Cooren Y, Clerc M, Siarry P (2009) Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm. Swarm Intell 3(2):149–178 MATHCrossRef
27.
Zurück zum Zitat Cooren Y, Clerc M, Siarry P (2011) MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm. Comput Optim Appl 49(2):379–400 MathSciNetMATHCrossRef Cooren Y, Clerc M, Siarry P (2011) MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm. Comput Optim Appl 49(2):379–400 MathSciNetMATHCrossRef
28.
Zurück zum Zitat Dai Y, Liu L, Feng S (2014) On the identification of coupled pitch and heave motions using opposition-based particle swarm optimization. Math Probl Eng 2014(3):1–10 Dai Y, Liu L, Feng S (2014) On the identification of coupled pitch and heave motions using opposition-based particle swarm optimization. Math Probl Eng 2014(3):1–10
29.
Zurück zum Zitat Daneshyari M, Yen GG (2011) Cultural-based multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 41(2):553–567 CrossRef Daneshyari M, Yen GG (2011) Cultural-based multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 41(2):553–567 CrossRef
30.
Zurück zum Zitat Daoudi M, Boukra A, Ahmed-Nacer M (2011) Adapting TRIBES algorithm for traveling salesman problem. In: Proceedings of the 10th international symposium on programming and systems (ISPS’ 2011), pp 163–168 Daoudi M, Boukra A, Ahmed-Nacer M (2011) Adapting TRIBES algorithm for traveling salesman problem. In: Proceedings of the 10th international symposium on programming and systems (ISPS’ 2011), pp 163–168
31.
Zurück zum Zitat Davarynejad M, Van Den Berg J, Rezaei J (2014) Evaluating center-seeking and initialization bias: the case of particle swarm and gravitational search algorithms. Inf Sci 278:802–821 MathSciNetCrossRef Davarynejad M, Van Den Berg J, Rezaei J (2014) Evaluating center-seeking and initialization bias: the case of particle swarm and gravitational search algorithms. Inf Sci 278:802–821 MathSciNetCrossRef
32.
Zurück zum Zitat Dos Santos Coelho L, Ayala HVH, Alotto P (2010) A multiobjective gaussian particle swarm approach applied to electromagnetic optimization. IEEE Trans Mag 46(8):3289–3292 CrossRef Dos Santos Coelho L, Ayala HVH, Alotto P (2010) A multiobjective gaussian particle swarm approach applied to electromagnetic optimization. IEEE Trans Mag 46(8):3289–3292 CrossRef
33.
Zurück zum Zitat Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings sixth symposium on micro machine and human science, Piscataway, pp 39–43. IEEE Service Center Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings sixth symposium on micro machine and human science, Piscataway, pp 39–43. IEEE Service Center
34.
Zurück zum Zitat Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, Chichester Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, Chichester
35.
Zurück zum Zitat Eslami M, Shareef H, Khajehzadeh M, Mohamed A (2012) A survey of the state of the art in particle swarm optimization. R J Appl Sci Eng Technol 4(9):1181–1197 Eslami M, Shareef H, Khajehzadeh M, Mohamed A (2012) A survey of the state of the art in particle swarm optimization. R J Appl Sci Eng Technol 4(9):1181–1197
36.
Zurück zum Zitat Gao W-F, Liu S-Y, Huang L-L (2012) Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique. Commun Nonlinear Sci Numer Simul 17(11):4316–4327 MathSciNetMATHCrossRef Gao W-F, Liu S-Y, Huang L-L (2012) Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique. Commun Nonlinear Sci Numer Simul 17(11):4316–4327 MathSciNetMATHCrossRef
37.
Zurück zum Zitat Ge RP, Qin YF (1987) A class of filled functions for finding global minimizers of a function of several variables. J Optim Theory Appl 54:241–252 MathSciNetMATHCrossRef Ge RP, Qin YF (1987) A class of filled functions for finding global minimizers of a function of several variables. J Optim Theory Appl 54:241–252 MathSciNetMATHCrossRef
38.
Zurück zum Zitat Gholipour R, Khosravi A, Mojallali H (2013) Suppression of chaotic behavior in duffing-holmes system using backstepping controller optimized by unified particle swarm optimization algorithm. Int J Eng Trans B Appl 26(11):1299–1306 Gholipour R, Khosravi A, Mojallali H (2013) Suppression of chaotic behavior in duffing-holmes system using backstepping controller optimized by unified particle swarm optimization algorithm. Int J Eng Trans B Appl 26(11):1299–1306
39.
Zurück zum Zitat Gholizadeh S, Moghadas R (2014) Performance-based optimum design of steel frames by an improved quantum particle swarm optimization. Adv Struct Eng 17(2):143–156 CrossRef Gholizadeh S, Moghadas R (2014) Performance-based optimum design of steel frames by an improved quantum particle swarm optimization. Adv Struct Eng 17(2):143–156 CrossRef
40.
Zurück zum Zitat Goudos SK, Moysiadou V, Samaras T, Siakavara K, Sahalos JN (2010) Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control. IEEE Antennas Wirel Propag Lett 9:125–129 CrossRef Goudos SK, Moysiadou V, Samaras T, Siakavara K, Sahalos JN (2010) Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control. IEEE Antennas Wirel Propag Lett 9:125–129 CrossRef
41.
Zurück zum Zitat He G, Wu B (2014) Unified particle swarm optimization with random ternary variables and its application to antenna array synthesis. J Electromag Waves Appl 28(6): 752–764 CrossRef He G, Wu B (2014) Unified particle swarm optimization with random ternary variables and its application to antenna array synthesis. J Electromag Waves Appl 28(6): 752–764 CrossRef
42.
Zurück zum Zitat He J, Dai H, Song X (2014) The combination stretching function technique with simulated annealing algorithm for global optimization. Optim Methods Softw 29(3): 629–645 MathSciNetMATHCrossRef He J, Dai H, Song X (2014) The combination stretching function technique with simulated annealing algorithm for global optimization. Optim Methods Softw 29(3): 629–645 MathSciNetMATHCrossRef
43.
Zurück zum Zitat Hu Z, Bao Y, Xiong T (2014) Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression. Appl Soft Comput J 25:15–25 CrossRef Hu Z, Bao Y, Xiong T (2014) Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression. Appl Soft Comput J 25:15–25 CrossRef
44.
Zurück zum Zitat Huang K-W, Chen J-L, Yang C-S, Tsai C-W (2015) A memetic particle swarm optimization algorithm for solving the dna fragment assembly problem. Neural Comput Appl 26(3): 495–506 CrossRef Huang K-W, Chen J-L, Yang C-S, Tsai C-W (2015) A memetic particle swarm optimization algorithm for solving the dna fragment assembly problem. Neural Comput Appl 26(3): 495–506 CrossRef
45.
Zurück zum Zitat Jamalipour M, Gharib M, Sayareh R, Khoshahval F (2013) PWR power distribution flattening using quantum particle swarm intelligence. Ann Nucl Energy 56:143–150 CrossRef Jamalipour M, Gharib M, Sayareh R, Khoshahval F (2013) PWR power distribution flattening using quantum particle swarm intelligence. Ann Nucl Energy 56:143–150 CrossRef
46.
Zurück zum Zitat Janson S, Middendorf M (2004) A hierarchical particle swarm optimizer for dynamic optimization problems. Lecture notes in computer science, vol 3005. Springer, Berlin/New York, pp 513–524 Janson S, Middendorf M (2004) A hierarchical particle swarm optimizer for dynamic optimization problems. Lecture notes in computer science, vol 3005. Springer, Berlin/New York, pp 513–524
47.
Zurück zum Zitat Janson S, Middendorf M (2006) A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet Program Evol Mach 7(4):329–354 CrossRef Janson S, Middendorf M (2006) A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet Program Evol Mach 7(4):329–354 CrossRef
48.
Zurück zum Zitat Jiang B, Wang N (2014) Cooperative bare-bone particle swarm optimization for data clustering. Soft Comput 18(6):1079–1091 CrossRef Jiang B, Wang N (2014) Cooperative bare-bone particle swarm optimization for data clustering. Soft Comput 18(6):1079–1091 CrossRef
49.
Zurück zum Zitat Jiang M, Luo YP, Yang SY (2007) Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf Process Lett 102:8–16 MathSciNetMATHCrossRef Jiang M, Luo YP, Yang SY (2007) Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf Process Lett 102:8–16 MathSciNetMATHCrossRef
50.
Zurück zum Zitat Jiao B, Yan S (2011) A cooperative co-evolutionary quantum particle swarm optimizer based on simulated annealing for job shop scheduling problem. Int J Artif Intell 7(11 A): 232–247 Jiao B, Yan S (2011) A cooperative co-evolutionary quantum particle swarm optimizer based on simulated annealing for job shop scheduling problem. Int J Artif Intell 7(11 A): 232–247
51.
Zurück zum Zitat Jin N, Rahmat-Samii Y (2007) Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans Antennas Propag 55(3 I):556–567 Jin N, Rahmat-Samii Y (2007) Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans Antennas Propag 55(3 I):556–567
52.
Zurück zum Zitat Jin N, Rahmat-Samii Y (2010) Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics. IEEE Trans Antennas Propag 58(12):3786–3794 CrossRef Jin N, Rahmat-Samii Y (2010) Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics. IEEE Trans Antennas Propag 58(12):3786–3794 CrossRef
53.
Zurück zum Zitat Jin Y, Olhofer M, Sendhoff B (2001) Evolutionary dynamic weighted aggregation for multiobjective optimization: why does it work and how? In: Proceedings GECCO 2001 conference, San Francisco, pp 1042–1049 Jin Y, Olhofer M, Sendhoff B (2001) Evolutionary dynamic weighted aggregation for multiobjective optimization: why does it work and how? In: Proceedings GECCO 2001 conference, San Francisco, pp 1042–1049
54.
Zurück zum Zitat Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput 10(3):245–255 CrossRef Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput 10(3):245–255 CrossRef
55.
Zurück zum Zitat Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim 55(1):165–188 MathSciNetMATHCrossRef Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim 55(1):165–188 MathSciNetMATHCrossRef
56.
Zurück zum Zitat Kennedy J (1998) The behavior of particles. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programming, vol VII. Springer, Berlin/New York, pp 581–590 Kennedy J (1998) The behavior of particles. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programming, vol VII. Springer, Berlin/New York, pp 581–590
57.
Zurück zum Zitat Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE congress on evolutionary computation, Washington, DC. IEEE Press, pp 1931–1938 Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE congress on evolutionary computation, Washington, DC. IEEE Press, pp 1931–1938
58.
Zurück zum Zitat Kennedy J (2003) Bare bones particle swarms. In: Proceedings of the IEEE swarm intelligence symposium, Indianapolis. IEEE Press, pp 80–87 Kennedy J (2003) Bare bones particle swarms. In: Proceedings of the IEEE swarm intelligence symposium, Indianapolis. IEEE Press, pp 80–87
59.
Zurück zum Zitat Kennedy J (2010) Particle swarm optimization. In: Sammut C, Webb G (eds) Encyclopedia of machine learning. Springer, Boston, pp 760–766 Kennedy J (2010) Particle swarm optimization. In: Sammut C, Webb G (eds) Encyclopedia of machine learning. Springer, Boston, pp 760–766
60.
Zurück zum Zitat Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding of the IEEE international conference neural networks, Piscataway, vol IV. IEEE Service Center, pp 1942–1948 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding of the IEEE international conference neural networks, Piscataway, vol IV. IEEE Service Center, pp 1942–1948
61.
Zurück zum Zitat Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the conference on systems, man and cybernetics, Hyatt Orlando, pp 4104–4109 Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the conference on systems, man and cybernetics, Hyatt Orlando, pp 4104–4109
62.
Zurück zum Zitat Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco
63.
Zurück zum Zitat Kiranyaz S, Ince T, Gabbouj M (2014) Multidimensional particle swarm optimization for machine learning and pattern recognition. Springer, Berlin MATHCrossRef Kiranyaz S, Ince T, Gabbouj M (2014) Multidimensional particle swarm optimization for machine learning and pattern recognition. Springer, Berlin MATHCrossRef
64.
Zurück zum Zitat Kishk A (2008) Particle swarm optimizaton: a physics-based approach. Morgan and Claypool Publishers, Arizona Kishk A (2008) Particle swarm optimizaton: a physics-based approach. Morgan and Claypool Publishers, Arizona
65.
Zurück zum Zitat Kotsireas IS, Koukouvinos C, Parsopoulos KE, Vrahatis MN (2006) Unified particle swarm optimization for Hadamard matrices of Williamson type. In: Proceedings of the 1st international conference on mathematical aspects of computer and information sciences (MACIS 2006), Beijing, pp 113–121 Kotsireas IS, Koukouvinos C, Parsopoulos KE, Vrahatis MN (2006) Unified particle swarm optimization for Hadamard matrices of Williamson type. In: Proceedings of the 1st international conference on mathematical aspects of computer and information sciences (MACIS 2006), Beijing, pp 113–121
66.
Zurück zum Zitat Krohling RA, Campos M, Borges P (2010) Bare bones particle swarm applied to parameter estimation of mixed weibull distribution. Adv Intell Soft Comput 75:53–60 Krohling RA, Campos M, Borges P (2010) Bare bones particle swarm applied to parameter estimation of mixed weibull distribution. Adv Intell Soft Comput 75:53–60
67.
Zurück zum Zitat Kwok NM, Ha QP, Liu DK, Fang G, Tan KC (2007) Efficient particle swarm optimization: a termination condition based on the decision-making approach. In: Proceedings of the 2007 IEEE congress on evolutionary computation (CEC 2007), Singapore, pp 3353–3360 Kwok NM, Ha QP, Liu DK, Fang G, Tan KC (2007) Efficient particle swarm optimization: a termination condition based on the decision-making approach. In: Proceedings of the 2007 IEEE congress on evolutionary computation (CEC 2007), Singapore, pp 3353–3360
68.
Zurück zum Zitat Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: Proceedings of the IEEE 2002 congress on evolutionary computation (IEEE CEC 2002), Honolulu. IEEE Press, pp 1582–1587 Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: Proceedings of the IEEE 2002 congress on evolutionary computation (IEEE CEC 2002), Honolulu. IEEE Press, pp 1582–1587
70.
Zurück zum Zitat Li X (2007) A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. ACM, New York, pp 78–85 Li X (2007) A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. ACM, New York, pp 78–85
71.
Zurück zum Zitat Li X (2010) Niching without Niching parameters: Particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169 CrossRef Li X (2010) Niching without Niching parameters: Particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169 CrossRef
72.
Zurück zum Zitat Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295 CrossRef Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295 CrossRef
73.
Zurück zum Zitat Likas A, Blekas K, Stafylopatis A (1996) Parallel recombinative reinforcement learning: a genetic approach. J Intell Syst 6(2):145–169 Likas A, Blekas K, Stafylopatis A (1996) Parallel recombinative reinforcement learning: a genetic approach. J Intell Syst 6(2):145–169
74.
Zurück zum Zitat Liu B-F, Chen H-M, Chen J-H, Hwang S-F, Ho S-Y (2005) MeSwarm: memetic particle swarm optimization. ACM, New York, pp 267–268 Liu B-F, Chen H-M, Chen J-H, Hwang S-F, Ho S-Y (2005) MeSwarm: memetic particle swarm optimization. ACM, New York, pp 267–268
75.
Zurück zum Zitat Liu DS, Tan KC, Huang SY, Goh CK, Ho WK (2008) On solving multiobjective bin packing problems using evolutionary particle swarm optimization. Eur J Oper Res 190(2): 357–382 MathSciNetMATHCrossRef Liu DS, Tan KC, Huang SY, Goh CK, Ho WK (2008) On solving multiobjective bin packing problems using evolutionary particle swarm optimization. Eur J Oper Res 190(2): 357–382 MathSciNetMATHCrossRef
76.
Zurück zum Zitat Liu R, Zhang P, Jiao L (2014) Quantum particle swarm optimization classification algorithm and its applications. Int J Pattern Recognit Artif Intell 28(2) Liu R, Zhang P, Jiao L (2014) Quantum particle swarm optimization classification algorithm and its applications. Int J Pattern Recognit Artif Intell 28(2)
77.
Zurück zum Zitat Lv L, Wang H, Li X, Xiao X, Zhang L (2014) Multi-swarm particle swarm optimization using opposition-based learning and application in coverage optimization of wireless sensor network. Sensor Lett 12(2):386–391 CrossRef Lv L, Wang H, Li X, Xiao X, Zhang L (2014) Multi-swarm particle swarm optimization using opposition-based learning and application in coverage optimization of wireless sensor network. Sensor Lett 12(2):386–391 CrossRef
78.
Zurück zum Zitat Magoulas GD, Vrahatis MN, Androulakis GS (1997) On the alleviation of local minima in backpropagation. Nonlinear Anal Theory Methods Appl 30(7):4545–4550 MATHCrossRef Magoulas GD, Vrahatis MN, Androulakis GS (1997) On the alleviation of local minima in backpropagation. Nonlinear Anal Theory Methods Appl 30(7):4545–4550 MATHCrossRef
79.
Zurück zum Zitat Manquinho VM, Marques Silva JP, Oliveira AL, Sakallah KA (1997) Branch and bound algorithms for highly constrained integer programs. Technical report, Cadence European Laboratories, Portugal Manquinho VM, Marques Silva JP, Oliveira AL, Sakallah KA (1997) Branch and bound algorithms for highly constrained integer programs. Technical report, Cadence European Laboratories, Portugal
80.
Zurück zum Zitat Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210 CrossRef Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210 CrossRef
81.
Zurück zum Zitat Mikki SM, Kishk AA (2006) Quantum particle swarm optimization for electromagnetics. IEEE Trans Antennas Propag 54(10):2764–2775 CrossRef Mikki SM, Kishk AA (2006) Quantum particle swarm optimization for electromagnetics. IEEE Trans Antennas Propag 54(10):2764–2775 CrossRef
82.
Zurück zum Zitat Moustaki E, Parsopoulos KE, Konstantaras I, Skouri K, Ganas I (2013) A first study of particle swarm optimization on the dynamic lot sizing problem with product returns. In: XI Balkan conference on operational research (BALCOR 2013), Belgrade, pp 348–356 Moustaki E, Parsopoulos KE, Konstantaras I, Skouri K, Ganas I (2013) A first study of particle swarm optimization on the dynamic lot sizing problem with product returns. In: XI Balkan conference on operational research (BALCOR 2013), Belgrade, pp 348–356
83.
Zurück zum Zitat Nanda B, Maity D, Maiti DK (2014) Crack assessment in frame structures using modal data and unified particle swarm optimization technique. Adv Struct Eng 17(5):747–766 CrossRef Nanda B, Maity D, Maiti DK (2014) Crack assessment in frame structures using modal data and unified particle swarm optimization technique. Adv Struct Eng 17(5):747–766 CrossRef
84.
Zurück zum Zitat Nanda B, Maity D, Maiti DK (2014) Modal parameter based inverse approach for structural joint damage assessment using unified particle swarm optimization. Appl Math Comput 242:407–422 MathSciNetMATH Nanda B, Maity D, Maiti DK (2014) Modal parameter based inverse approach for structural joint damage assessment using unified particle swarm optimization. Appl Math Comput 242:407–422 MathSciNetMATH
85.
Zurück zum Zitat Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2:1–14 CrossRef Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2:1–14 CrossRef
86.
Zurück zum Zitat Olsson AE (ed) (2011) Particle swarm optimization: theory, techniques and applications. Nova Science Pub Inc., New York Olsson AE (ed) (2011) Particle swarm optimization: theory, techniques and applications. Nova Science Pub Inc., New York
87.
Zurück zum Zitat Ozcan E, Mohan CK Analysis of a simple particle swarm optimization. In: Intelligent engineering systems through artificial neural networks, vol 8. ASME Press, New York, pp 253–258 Ozcan E, Mohan CK Analysis of a simple particle swarm optimization. In: Intelligent engineering systems through artificial neural networks, vol 8. ASME Press, New York, pp 253–258
88.
Zurück zum Zitat Ozcan E, Mohan CK (1999) Particle swarm optimization: surfing the waves. In: Proceedings of the 1999 IEEE international conference on evolutionary computation, Washington, DC, pp 1939–1944 Ozcan E, Mohan CK (1999) Particle swarm optimization: surfing the waves. In: Proceedings of the 1999 IEEE international conference on evolutionary computation, Washington, DC, pp 1939–1944
89.
Zurück zum Zitat Padhye N, Deb K, Mittal P (2013) Boundary handling approaches in particle swarm optimization. In: Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012), Gwalior, vol 201, pp 287–298 Padhye N, Deb K, Mittal P (2013) Boundary handling approaches in particle swarm optimization. In: Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012), Gwalior, vol 201, pp 287–298
90.
Zurück zum Zitat Pan F, Hu X, Eberhart R, Chen Y (2008) An analysis of bare bones particle swarm. In: Proceedings of the 2008 IEEE swarm intelligence symposium, St. Louis Pan F, Hu X, Eberhart R, Chen Y (2008) An analysis of bare bones particle swarm. In: Proceedings of the 2008 IEEE swarm intelligence symposium, St. Louis
91.
Zurück zum Zitat Pan H, Wang L, Liu B (2006) Particle swarm optimization for function optimization in noisy environment. Appl Math Comput 181(2):908–919 MathSciNetMATH Pan H, Wang L, Liu B (2006) Particle swarm optimization for function optimization in noisy environment. Appl Math Comput 181(2):908–919 MathSciNetMATH
92.
Zurück zum Zitat Pandremmenou K, Kondi LP, Parsopoulos KE, Bentley ES (2014) Game-theoretic solutions through intelligent optimization for efficient resource management in wireless visual sensor networks. Signal Process Image Commun 29(4):472–493 CrossRef Pandremmenou K, Kondi LP, Parsopoulos KE, Bentley ES (2014) Game-theoretic solutions through intelligent optimization for efficient resource management in wireless visual sensor networks. Signal Process Image Commun 29(4):472–493 CrossRef
93.
Zurück zum Zitat Parasuraman D (2012) Handbook of particle swarm optimization: concepts, principles & applications. Auris reference, Nottingham Parasuraman D (2012) Handbook of particle swarm optimization: concepts, principles & applications. Auris reference, Nottingham
94.
Zurück zum Zitat Parrott D, Li X (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10(4):440–458 CrossRef Parrott D, Li X (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10(4):440–458 CrossRef
95.
Zurück zum Zitat Parsopoulos KE, Plagianakos VP, Magoulas GD, Vrahatis MN (2001) Objective function “stretching” to alleviate convergence to local minima. Nonlinear Anal Theory Methods Appl 47(5):3419–3424 MathSciNetMATHCrossRef Parsopoulos KE, Plagianakos VP, Magoulas GD, Vrahatis MN (2001) Objective function “stretching” to alleviate convergence to local minima. Nonlinear Anal Theory Methods Appl 47(5):3419–3424 MathSciNetMATHCrossRef
96.
Zurück zum Zitat Parsopoulos KE, Tasoulis DK, Vrahatis MN (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Hamza MH (ed) Proceedings of the IASTED 2004 international conference on artificial intelligence and applications (AIA 2004), Innsbruck, vol 2. IASTED/ACTA Press, pp 823–828 Parsopoulos KE, Tasoulis DK, Vrahatis MN (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Hamza MH (ed) Proceedings of the IASTED 2004 international conference on artificial intelligence and applications (AIA 2004), Innsbruck, vol 2. IASTED/ACTA Press, pp 823–828
97.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2001) Particle swarm optimizer in noisy and continuously changing environments. In: Hamza MH (ed) Artificial intelligence and soft computing. IASTED/ACTA Press, Anaheim, pp 289–294 Parsopoulos KE, Vrahatis MN (2001) Particle swarm optimizer in noisy and continuously changing environments. In: Hamza MH (ed) Artificial intelligence and soft computing. IASTED/ACTA Press, Anaheim, pp 289–294
98.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method for constrained optimization problems. In: Sincak P, Vascak J, Kvasnicka V, Pospichal J (eds) Intelligent technologies-theory and application: new trends in intelligent technologies. Frontiers in artificial intelligence and applications, vol 76. IOS Press, pp 214–220 Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method for constrained optimization problems. In: Sincak P, Vascak J, Kvasnicka V, Pospichal J (eds) Intelligent technologies-theory and application: new trends in intelligent technologies. Frontiers in artificial intelligence and applications, vol 76. IOS Press, pp 214–220
99.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: Proceedings of the ACM 2002 symposium on applied computing (SAC 2002), Madrid. ACM Press, pp 603–607 CrossRef Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: Proceedings of the ACM 2002 symposium on applied computing (SAC 2002), Madrid. ACM Press, pp 603–607 CrossRef
100.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1(2-3):235–306 MathSciNetMATHCrossRef Parsopoulos KE, Vrahatis MN (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1(2-3):235–306 MathSciNetMATHCrossRef
101.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Trans Evol Comput 8(3):211–224 CrossRef Parsopoulos KE, Vrahatis MN (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Trans Evol Comput 8(3):211–224 CrossRef
102.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm optimization scheme. In: Proceedings of the international conference of computational methods in sciences and engineering (ICCMSE 2004). Lecture series on computer and computational sciences, vol 1. VSP International Science Publishers, Zeist, pp 868–873 Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm optimization scheme. In: Proceedings of the international conference of computational methods in sciences and engineering (ICCMSE 2004). Lecture series on computer and computational sciences, vol 1. VSP International Science Publishers, Zeist, pp 868–873
103.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2006) Studying the performance of unified particle swarm optimization on the single machine total weighted tardiness problem. In: Sattar A, Kang BH (eds) Lecture notes in artificial intelligence (LNAI), vol 4304. Springer, Berlin/New York, pp 760–769 Parsopoulos KE, Vrahatis MN (2006) Studying the performance of unified particle swarm optimization on the single machine total weighted tardiness problem. In: Sattar A, Kang BH (eds) Lecture notes in artificial intelligence (LNAI), vol 4304. Springer, Berlin/New York, pp 760–769
104.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2007) Parameter selection and adaptation in unified particle swarm optimization. Math Comput Model 46(1–2):198–213 MathSciNetMATHCrossRef Parsopoulos KE, Vrahatis MN (2007) Parameter selection and adaptation in unified particle swarm optimization. Math Comput Model 46(1–2):198–213 MathSciNetMATHCrossRef
105.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2008) Multi-objective particles swarm optimization approaches. In Bui LT, Alam S (eds) Multi-objective optimization in computational intelligence: theory and practice. Premier reference source, chapter 2. Information Science Reference (IGI Global), Hershey, pp 20–42 CrossRef Parsopoulos KE, Vrahatis MN (2008) Multi-objective particles swarm optimization approaches. In Bui LT, Alam S (eds) Multi-objective optimization in computational intelligence: theory and practice. Premier reference source, chapter 2. Information Science Reference (IGI Global), Hershey, pp 20–42 CrossRef
106.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2010) Particle swarm optimization and intelligence: advances and applications. Inf Sci Publ (IGI Glob) Parsopoulos KE, Vrahatis MN (2010) Particle swarm optimization and intelligence: advances and applications. Inf Sci Publ (IGI Glob)
107.
Zurück zum Zitat Petalas YG, Parsopoulos KE, Vrahatis MN (2007) Entropy-based memetic particle swarm optimization for computing periodic orbits of nonlinear mappings. In: IEEE 2007 congress on evolutionary computation (IEEE CEC 2007), Singapore. IEEE Press, pp 2040–2047 CrossRef Petalas YG, Parsopoulos KE, Vrahatis MN (2007) Entropy-based memetic particle swarm optimization for computing periodic orbits of nonlinear mappings. In: IEEE 2007 congress on evolutionary computation (IEEE CEC 2007), Singapore. IEEE Press, pp 2040–2047 CrossRef
108.
109.
Zurück zum Zitat Petalas YG, Parsopoulos KE, Vrahatis MN (2009) Improving fuzzy cognitive maps learning through memetic particle swarm optimization. Soft Comput 13(1):77–94 CrossRef Petalas YG, Parsopoulos KE, Vrahatis MN (2009) Improving fuzzy cognitive maps learning through memetic particle swarm optimization. Soft Comput 13(1):77–94 CrossRef
110.
Zurück zum Zitat Piperagkas GS, Georgoulas G, Parsopoulos KE, Stylios CD, Likas CA (2012) Integrating particle swarm optimization with reinforcement learning in noisy problems. In: Genetic and evolutionary computation conference 2012 (GECCO 2012), Philadelphia. ACM, pp 65–72 Piperagkas GS, Georgoulas G, Parsopoulos KE, Stylios CD, Likas CA (2012) Integrating particle swarm optimization with reinforcement learning in noisy problems. In: Genetic and evolutionary computation conference 2012 (GECCO 2012), Philadelphia. ACM, pp 65–72
111.
Zurück zum Zitat Piperagkas GS, Konstantaras I, Skouri K, Parsopoulos KE (2012) Solving the stochastic dynamic lot-sizing problem through nature-inspired heuristics. Comput Oper Res 39(7):1555–1565 MathSciNetMATHCrossRef Piperagkas GS, Konstantaras I, Skouri K, Parsopoulos KE (2012) Solving the stochastic dynamic lot-sizing problem through nature-inspired heuristics. Comput Oper Res 39(7):1555–1565 MathSciNetMATHCrossRef
112.
Zurück zum Zitat Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl 2008(3):1–10 Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl 2008(3):1–10
113.
Zurück zum Zitat Poli R (2008) Dynamic and stability of the sampling distribution of particle swarm optimisers via moment analysis. J Artif Evol Appl 2008(3):10010 Poli R (2008) Dynamic and stability of the sampling distribution of particle swarm optimisers via moment analysis. J Artif Evol Appl 2008(3):10010
114.
Zurück zum Zitat Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57 CrossRef Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57 CrossRef
115.
Zurück zum Zitat Poli R, Langdon WB (2007) Markov chain models of bare-bones particle swarm optimizers. ACM, New York, pp 142–149 Poli R, Langdon WB (2007) Markov chain models of bare-bones particle swarm optimizers. ACM, New York, pp 142–149
116.
Zurück zum Zitat Pookpunt S, Ongsakul W (2013) Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renew Energy 55:266–276 CrossRef Pookpunt S, Ongsakul W (2013) Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renew Energy 55:266–276 CrossRef
117.
Zurück zum Zitat Potter MA, De Jong K (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29 CrossRef Potter MA, De Jong K (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29 CrossRef
118.
Zurück zum Zitat Qu BY, Liang JJ, Suganthan PN (2012) Niching particle swarm optimization with local search for multi-modal optimization. Inf Sci 197:131–143 CrossRef Qu BY, Liang JJ, Suganthan PN (2012) Niching particle swarm optimization with local search for multi-modal optimization. Inf Sci 197:131–143 CrossRef
119.
Zurück zum Zitat Rada-Vilela J, Johnston M, Zhang M (2014) Population statistics for particle swarm optimization: resampling methods in noisy optimization problems. Swarm Evol Comput 17:37–59 CrossRef Rada-Vilela J, Johnston M, Zhang M (2014) Population statistics for particle swarm optimization: resampling methods in noisy optimization problems. Swarm Evol Comput 17:37–59 CrossRef
120.
Zurück zum Zitat Rahnamayan RS, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79 CrossRef Rahnamayan RS, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79 CrossRef
121.
Zurück zum Zitat Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308 MathSciNet Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308 MathSciNet
122.
Zurück zum Zitat Rezaee Jordehi A, Jasni J (2013) Parameter selection in particle swarm optimisation: a survey. J Exp Theor Artif Intell 25(4):527–542 CrossRef Rezaee Jordehi A, Jasni J (2013) Parameter selection in particle swarm optimisation: a survey. J Exp Theor Artif Intell 25(4):527–542 CrossRef
123.
Zurück zum Zitat Rini DP, Shamsuddin SM, Yuhaniz SS (2014) Particle swarm optimization: technique, system and challenges. Int J Comput Appl 14(1):19–27 Rini DP, Shamsuddin SM, Yuhaniz SS (2014) Particle swarm optimization: technique, system and challenges. Int J Comput Appl 14(1):19–27
124.
125.
Zurück zum Zitat Schoeman IL, Engelbrecht AP (2010) A novel particle swarm niching technique based on extensive vector operations. Nat Comput 9(3):683–701 MathSciNetMATHCrossRef Schoeman IL, Engelbrecht AP (2010) A novel particle swarm niching technique based on extensive vector operations. Nat Comput 9(3):683–701 MathSciNetMATHCrossRef
126.
Zurück zum Zitat Schwefel H-P (1995) Evolution and optimum seeking. Wiley, New York MATH Schwefel H-P (1995) Evolution and optimum seeking. Wiley, New York MATH
127.
Zurück zum Zitat Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxonomy and applications. Int J Comput Theory Eng 1(5):486–502 CrossRef Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxonomy and applications. Int J Comput Theory Eng 1(5):486–502 CrossRef
128.
Zurück zum Zitat Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings IEEE conference on evolutionary computation, Anchorage. IEEE Service Center, pp 69–73 Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings IEEE conference on evolutionary computation, Anchorage. IEEE Service Center, pp 69–73
129.
Zurück zum Zitat Skokos Ch, Parsopoulos KE, Patsis PA, Vrahatis MN (2005) Particle swarm optimization: an efficient method for tracing periodic orbits in 3D galactic potentials. Mon Not R Astron Soc 359:251–260 CrossRef Skokos Ch, Parsopoulos KE, Patsis PA, Vrahatis MN (2005) Particle swarm optimization: an efficient method for tracing periodic orbits in 3D galactic potentials. Mon Not R Astron Soc 359:251–260 CrossRef
130.
Zurück zum Zitat Souravlias D, Parsopoulos KE (2016) Particle swarm optimization with neighborhood-based budget allocation. Int J Mach Learn Cybern 7(3):451–477. Springer Souravlias D, Parsopoulos KE (2016) Particle swarm optimization with neighborhood-based budget allocation. Int J Mach Learn Cybern 7(3):451–477. Springer
131.
Zurück zum Zitat Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359 MathSciNetMATHCrossRef Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359 MathSciNetMATHCrossRef
132.
Zurück zum Zitat Suganthan PN (1999) Particle swarm optimizer with neighborhood operator. In: Proceedings of the IEEE congress on evolutionary computation, Washington, DC, pp 1958–1961 Suganthan PN (1999) Particle swarm optimizer with neighborhood operator. In: Proceedings of the IEEE congress on evolutionary computation, Washington, DC, pp 1958–1961
133.
Zurück zum Zitat Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the IEEE congress on evolutionary computation 2004 (IEEE CEC’04), Portland (OR), pp 325–331 Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the IEEE congress on evolutionary computation 2004 (IEEE CEC’04), Portland (OR), pp 325–331
134.
Zurück zum Zitat Sun J, Lai C-H, Wu X-J (2011) Particle swarm optimisation: classical and quantum perspectives. CRC Press, Boca Raton MATH Sun J, Lai C-H, Wu X-J (2011) Particle swarm optimisation: classical and quantum perspectives. CRC Press, Boca Raton MATH
135.
Zurück zum Zitat Sun J, Xu W, Feng B (2004) A global search strategy for quantum-behaved particle swarm optimization. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems, Singapore, pp 111–116 Sun J, Xu W, Feng B (2004) A global search strategy for quantum-behaved particle swarm optimization. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems, Singapore, pp 111–116
136.
Zurück zum Zitat Sun S, Li J (2014) A two-swarm cooperative particle swarms optimization. Swarm Evol Comput 15:1–18 CrossRef Sun S, Li J (2014) A two-swarm cooperative particle swarms optimization. Swarm Evol Comput 15:1–18 CrossRef
137.
Zurück zum Zitat Sutton AM, Whitley D, Lunacek M, Howe A (2006) PSO and multi-funnel landscapes: how cooperation might limit exploration. In: Proceedings of the 8th annual conference on genetic and evolutionary computation (GECCO’06), Seattle, pp 75–82 Sutton AM, Whitley D, Lunacek M, Howe A (2006) PSO and multi-funnel landscapes: how cooperation might limit exploration. In: Proceedings of the 8th annual conference on genetic and evolutionary computation (GECCO’06), Seattle, pp 75–82
138.
Zurück zum Zitat Tasgetiren F, Chen A, Gencyilmaz G, Gattoufi S (2009) Smallest position value approach. Stud Comput Intell 175:121–138 MATH Tasgetiren F, Chen A, Gencyilmaz G, Gattoufi S (2009) Smallest position value approach. Stud Comput Intell 175:121–138 MATH
139.
Zurück zum Zitat Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G (2006) Particle swarm optimization and differential evolution for the single machine total weighted tardiness problem. Int J Prod Res 44(22):4737–4754 MATHCrossRef Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G (2006) Particle swarm optimization and differential evolution for the single machine total weighted tardiness problem. Int J Prod Res 44(22):4737–4754 MATHCrossRef
140.
Zurück zum Zitat Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G (2007) A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. Eur J Oper Res 177(3):1930–1947 MATHCrossRef Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G (2007) A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. Eur J Oper Res 177(3):1930–1947 MATHCrossRef
141.
Zurück zum Zitat Thangaraj R, Pant M, Abraham A, Bouvry P (2011) Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl Math Comput 217(12):5208–5226 MATH Thangaraj R, Pant M, Abraham A, Bouvry P (2011) Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl Math Comput 217(12):5208–5226 MATH
143.
Zurück zum Zitat Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325 MathSciNetMATHCrossRef Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325 MathSciNetMATHCrossRef
144.
Zurück zum Zitat Tsai H-C (2010) Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization. Expert Syst Appl 37(2): 1104–1112 CrossRef Tsai H-C (2010) Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization. Expert Syst Appl 37(2): 1104–1112 CrossRef
145.
Zurück zum Zitat Van den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimiser. In: Proceedings of the 2002 IEEE international conference on systems, man and cybernetics, vol 3, pp 94–99 Van den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimiser. In: Proceedings of the 2002 IEEE international conference on systems, man and cybernetics, vol 3, pp 94–99
146.
Zurück zum Zitat Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239 CrossRef Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239 CrossRef
147.
148.
Zurück zum Zitat Voglis C, Parsopoulos KE, Lagaris IE (2012) Particle swarm optimization with deliberate loss of information. Soft Comput 16(8):1373–1392 CrossRef Voglis C, Parsopoulos KE, Lagaris IE (2012) Particle swarm optimization with deliberate loss of information. Soft Comput 16(8):1373–1392 CrossRef
149.
Zurück zum Zitat Voglis C, Parsopoulos KE, Papageorgiou DG, Lagaris IE, Vrahatis MN (2012) MEMPSODE: a global optimization software based on hybridization of population-based algorithms and local searches. Comput Phys Commun 183(5):1139–1154 CrossRef Voglis C, Parsopoulos KE, Papageorgiou DG, Lagaris IE, Vrahatis MN (2012) MEMPSODE: a global optimization software based on hybridization of population-based algorithms and local searches. Comput Phys Commun 183(5):1139–1154 CrossRef
150.
Zurück zum Zitat Wang H, Moon I, Yang S, Wang D (2012) A memetic particle swarm optimization algorithm for multimodal optimization problems. Inf Sci 197:38–52 CrossRef Wang H, Moon I, Yang S, Wang D (2012) A memetic particle swarm optimization algorithm for multimodal optimization problems. Inf Sci 197:38–52 CrossRef
151.
Zurück zum Zitat Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181(20):4699–4714 MathSciNetCrossRef Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181(20):4699–4714 MathSciNetCrossRef
152.
Zurück zum Zitat Wang H, Zhao X, Wang K, Xia K, Tu X (2014) Cooperative velocity updating model based particle swarm optimization. Appl Intell 40(2):322–342 CrossRef Wang H, Zhao X, Wang K, Xia K, Tu X (2014) Cooperative velocity updating model based particle swarm optimization. Appl Intell 40(2):322–342 CrossRef
153.
Zurück zum Zitat Wang Y-J, Zhang J-S (2008) A new constructing auxiliary function method for global optimization. Math Comput Modell 47(11–12):1396–1410 MathSciNetMATHCrossRef Wang Y-J, Zhang J-S (2008) A new constructing auxiliary function method for global optimization. Math Comput Modell 47(11–12):1396–1410 MathSciNetMATHCrossRef
154.
Zurück zum Zitat Wu H, Geng J, Jin R, Qiu J, Liu W, Chen J, Liu S (2009) An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas. IEEE Trans Antennas Propag 57(10 PART 2):3018–3028 Wu H, Geng J, Jin R, Qiu J, Liu W, Chen J, Liu S (2009) An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas. IEEE Trans Antennas Propag 57(10 PART 2):3018–3028
155.
Zurück zum Zitat Xianfeng Y, Li LS (2014) Dynamic adjustment strategies of inertia weight in particle swarm optimization algorithm. Int J Control Autom 7(5):353–364 CrossRef Xianfeng Y, Li LS (2014) Dynamic adjustment strategies of inertia weight in particle swarm optimization algorithm. Int J Control Autom 7(5):353–364 CrossRef
156.
Zurück zum Zitat Xu W, Duan BY, Li P, Hu N, Qiu Y (2014) Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes. IEEE Trans Antennas Propag 62(11):5880–5885 MathSciNetMATHCrossRef Xu W, Duan BY, Li P, Hu N, Qiu Y (2014) Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes. IEEE Trans Antennas Propag 62(11):5880–5885 MathSciNetMATHCrossRef
157.
Zurück zum Zitat Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl Soft Comput J 18: 261–276 CrossRef Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl Soft Comput J 18: 261–276 CrossRef
158.
Zurück zum Zitat Yang J, Zhang H, Ling Y, Pan C, Sun W (2014) Task allocation for wireless sensor network using modified binary particle swarm optimization. IEEE Sens J 14(3):882–892 CrossRef Yang J, Zhang H, Ling Y, Pan C, Sun W (2014) Task allocation for wireless sensor network using modified binary particle swarm optimization. IEEE Sens J 14(3):882–892 CrossRef
159.
Zurück zum Zitat Yang J-M, Chen Y-P, Horng J-T, Kao C-Y (1997) Applying family competition to evolution strategies for constrained optimization. Lecture notes in mathematics, vol 1213. Springer, Berlin/New York, pp 201–211 Yang J-M, Chen Y-P, Horng J-T, Kao C-Y (1997) Applying family competition to evolution strategies for constrained optimization. Lecture notes in mathematics, vol 1213. Springer, Berlin/New York, pp 201–211
160.
Zurück zum Zitat Yen GG, Leong WF (2009) Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern Part A Syst Hum 39(4):890–911 CrossRef Yen GG, Leong WF (2009) Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern Part A Syst Hum 39(4):890–911 CrossRef
161.
Zurück zum Zitat Yu X, Zhang X (2014) Enhanced comprehensive learning particle swarm optimization. Appl Math Comput 242:265–276 MathSciNetMATH Yu X, Zhang X (2014) Enhanced comprehensive learning particle swarm optimization. Appl Math Comput 242:265–276 MathSciNetMATH
162.
Zurück zum Zitat Zambrano-Bigiarini M, Clerc M, Rojas R (2013) Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements. In: 2013 IEEE congress on evolutionary computation, Cancún, pp 2337–2344 Zambrano-Bigiarini M, Clerc M, Rojas R (2013) Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements. In: 2013 IEEE congress on evolutionary computation, Cancún, pp 2337–2344
163.
Zurück zum Zitat Zhang Q, Wang Z, Tao F, Sarker BR, Cheng L (2014) Design of optimal attack-angle for RLV reentry based on quantum particle swarm optimization. Adv Mech Eng 6:352983 CrossRef Zhang Q, Wang Z, Tao F, Sarker BR, Cheng L (2014) Design of optimal attack-angle for RLV reentry based on quantum particle swarm optimization. Adv Mech Eng 6:352983 CrossRef
164.
Zurück zum Zitat Zhang Y, Gong D, Hu Y, Zhang W (2015) Feature selection algorithm based on bare bones particle swarm optimization. Neurocomputing 148:150–157 CrossRef Zhang Y, Gong D, Hu Y, Zhang W (2015) Feature selection algorithm based on bare bones particle swarm optimization. Neurocomputing 148:150–157 CrossRef
165.
Zurück zum Zitat Zhang Y, Gong D-W, Ding Z (2012) A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf Sci 192:213–227 CrossRef Zhang Y, Gong D-W, Ding Z (2012) A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf Sci 192:213–227 CrossRef
166.
Zurück zum Zitat Zhang Y, Gong D-W, Sun X-Y, Geng N (2014) Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis. Soft Comput 18(7):1337–1352 MATHCrossRef Zhang Y, Gong D-W, Sun X-Y, Geng N (2014) Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis. Soft Comput 18(7):1337–1352 MATHCrossRef
167.
Zurück zum Zitat Zhao F, Li G, Yang C, Abraham A, Liu H (2014) A human-computer cooperative particle swarm optimization based immune algorithm for layout design. Neurocomputing 132: 68–78 CrossRef Zhao F, Li G, Yang C, Abraham A, Liu H (2014) A human-computer cooperative particle swarm optimization based immune algorithm for layout design. Neurocomputing 132: 68–78 CrossRef
168.
Zurück zum Zitat Zhao J, Lv L, Fan T, Wang H, Li C, Fu P (2014) Particle swarm optimization using elite opposition-based learning and application in wireless sensor network. Sens Lett 12(2): 404–408 CrossRef Zhao J, Lv L, Fan T, Wang H, Li C, Fu P (2014) Particle swarm optimization using elite opposition-based learning and application in wireless sensor network. Sens Lett 12(2): 404–408 CrossRef
169.
Zurück zum Zitat Zheng Y-J, Ling H-F, Xue J-Y, Chen S-Y (2014) Population classification in fire evacuation: a multiobjective particle swarm optimization approach. IEEE Trans Evol Comput 18(1):70–81 CrossRef Zheng Y-J, Ling H-F, Xue J-Y, Chen S-Y (2014) Population classification in fire evacuation: a multiobjective particle swarm optimization approach. IEEE Trans Evol Comput 18(1):70–81 CrossRef
Metadaten
Titel
Particle Swarm Methods
verfasst von
Konstantinos E. Parsopoulos
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-07124-4_22

Premium Partner