Skip to main content
Erschienen in: Journal of Computational Electronics 4/2019

20.08.2019

Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor

verfasst von: Narjes Amoosoltani, Abbas Zarifkar, Ali Farmani

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface plasmon resonance (SPR) is a spotlight technique for environmental monitoring. In this regard, an optical gas sensor based on SPR is investigated and analyzed here. The sensor is used for detection of toxic gases such as cyanogen, ethanol, propane, nitrogen dioxide, and phosgene. The performance of the sensor is inspected and optimized by considering different parameters such as the thickness of the metal layer, the material used for the prism, and the incident light angle and wavelength. The finite-difference time-domain method is used for simulation, and the optimization algorithm is particle swarm optimization. Simulation results show that the best metal thickness for gold, silver, aluminum, and copper is 44.39 nm, 43.16 nm, 18.195 nm, and 32.5 nm, respectively. Also, utilizing different materials such as SiO2, PMMA, BCB, MgF2, and cyclomer for the prism and the effect of temperature variation on these materials are studied, and it is shown that MgF2 demonstrates better performance. Furthermore, the results of the optimization indicate that the most suitable incident light angles (wavelengths) are 44.43° (900.59 nm), 45.5° (599.7 nm), 44.56° (300.1 nm), and 44.41° (899.4 nm) for gold, silver, aluminum, and copper, respectively. The sensor shows the best full-width at half-maximum and quality factor (Q) of 4.2 nm and 214.28, respectively, for the combination of MgF2 prism and a gold layer. The maximum sensitivity and figure of merit for gold layer are >120 (nm/RIU) and >20, and for copper layer are >270 (nm/RIU) and >30, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Syahir, A., Usui, K., Tomizaki, K.Y., Kajikawa, K., Mihara, H.: Label and label-free detection techniques for protein microarrays. Microarrays 4(2), 228–244 (2015)CrossRef Syahir, A., Usui, K., Tomizaki, K.Y., Kajikawa, K., Mihara, H.: Label and label-free detection techniques for protein microarrays. Microarrays 4(2), 228–244 (2015)CrossRef
2.
Zurück zum Zitat Zareyi, H., Vaezzadeh, M.: Geometry effect on plasmon frequency in triangular nanoprism. Plasmonics 13(5), 1759–1765 (2018)CrossRef Zareyi, H., Vaezzadeh, M.: Geometry effect on plasmon frequency in triangular nanoprism. Plasmonics 13(5), 1759–1765 (2018)CrossRef
3.
Zurück zum Zitat Javid, M.R., Miri, M., Zarifkar, A.: Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity. Opt. Commun. 410, 652–659 (2018)CrossRef Javid, M.R., Miri, M., Zarifkar, A.: Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity. Opt. Commun. 410, 652–659 (2018)CrossRef
4.
Zurück zum Zitat Roh, S., Chung, T., Lee, B.: Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors. Sensors 11(2), 1565–1588 (2011)CrossRef Roh, S., Chung, T., Lee, B.: Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors. Sensors 11(2), 1565–1588 (2011)CrossRef
5.
Zurück zum Zitat Majdi, M., Fathi, D.: Graphene-based nano bio-sensor: sensitivity improvement. Sci. Iran. 24(6), 3531–3535 (2017) Majdi, M., Fathi, D.: Graphene-based nano bio-sensor: sensitivity improvement. Sci. Iran. 24(6), 3531–3535 (2017)
6.
Zurück zum Zitat Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)CrossRef Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)CrossRef
7.
Zurück zum Zitat Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160(1), 623–631 (2011)CrossRef Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160(1), 623–631 (2011)CrossRef
8.
Zurück zum Zitat Motavas, M.H., Zarifkar, A.: Low threshold nanorod-based plasmonic nanolasers with optimized cavity length. Opt. Laser Technol. 111, 315–322 (2019)CrossRef Motavas, M.H., Zarifkar, A.: Low threshold nanorod-based plasmonic nanolasers with optimized cavity length. Opt. Laser Technol. 111, 315–322 (2019)CrossRef
9.
Zurück zum Zitat Purkayastha, A., Srivastava, T., Jha, R.: Ultrasensitive THz–plasmonics gaseous sensor using doped graphene. Sens. Actuators B Chem. 227, 291–295 (2016)CrossRef Purkayastha, A., Srivastava, T., Jha, R.: Ultrasensitive THz–plasmonics gaseous sensor using doped graphene. Sens. Actuators B Chem. 227, 291–295 (2016)CrossRef
10.
Zurück zum Zitat Juan-Colas, J., Johnson, S., Krauss, T.: Dual-mode electro-optical techniques for biosensing applications: a review. Sensors 17(9), 2047 (2017)CrossRef Juan-Colas, J., Johnson, S., Krauss, T.: Dual-mode electro-optical techniques for biosensing applications: a review. Sensors 17(9), 2047 (2017)CrossRef
11.
Zurück zum Zitat Mohammad-Yousefi, S., Rahbarpour, S., Ghafoorifard, H.: Describing the effect of Ag/Au modification on operating temperature and gas sensing properties of thick film SnO2 gas sensors by gas diffusion theory. Mater. Chem. Phys. 227, 148–156 (2019)CrossRef Mohammad-Yousefi, S., Rahbarpour, S., Ghafoorifard, H.: Describing the effect of Ag/Au modification on operating temperature and gas sensing properties of thick film SnO2 gas sensors by gas diffusion theory. Mater. Chem. Phys. 227, 148–156 (2019)CrossRef
12.
Zurück zum Zitat Zeng, S., Sreekanth, K.V., Shang, J., Yu, T., Chen, C.K., Yin, F., Baillargeat, D., Coquet, P., Ho, H.P., Kabashin, A.V., Yong, K.T.: Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27(40), 6163–6169 (2015)CrossRef Zeng, S., Sreekanth, K.V., Shang, J., Yu, T., Chen, C.K., Yin, F., Baillargeat, D., Coquet, P., Ho, H.P., Kabashin, A.V., Yong, K.T.: Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27(40), 6163–6169 (2015)CrossRef
13.
Zurück zum Zitat Esfandiyari, M., Norouzi, M., Haghdoust, P., Jarchi, S.: Study of a surface plasmon resonance optical fiber sensor based on periodically grating and graphene. Silicon 10(6), 2711–2716 (2018)CrossRef Esfandiyari, M., Norouzi, M., Haghdoust, P., Jarchi, S.: Study of a surface plasmon resonance optical fiber sensor based on periodically grating and graphene. Silicon 10(6), 2711–2716 (2018)CrossRef
14.
Zurück zum Zitat Khani, S., Danaie, M., Rezaei, P.: Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt. Eng. 57(10), 107102 (2018)CrossRef Khani, S., Danaie, M., Rezaei, P.: Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt. Eng. 57(10), 107102 (2018)CrossRef
15.
Zurück zum Zitat Caucheteur, C., Guo, T., Albert, J.: Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407(14), 3883–3897 (2015)CrossRef Caucheteur, C., Guo, T., Albert, J.: Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407(14), 3883–3897 (2015)CrossRef
16.
Zurück zum Zitat Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018)CrossRef Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018)CrossRef
17.
Zurück zum Zitat Rezaei, M.H., Zarifkar, A., Miri, M.: Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt. Mater. 84, 572–578 (2018)CrossRef Rezaei, M.H., Zarifkar, A., Miri, M.: Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt. Mater. 84, 572–578 (2018)CrossRef
18.
Zurück zum Zitat Farmani, A., Miri, M., Sheikhi, M.H.: Tunable resonant Goos-Hanchen and Imbert-Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. J. Opt. Soc. Am. B 34(6), 1097–1106 (2017)CrossRef Farmani, A., Miri, M., Sheikhi, M.H.: Tunable resonant Goos-Hanchen and Imbert-Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. J. Opt. Soc. Am. B 34(6), 1097–1106 (2017)CrossRef
19.
Zurück zum Zitat Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B 36(2), 401–407 (2019)CrossRef Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B 36(2), 401–407 (2019)CrossRef
20.
Zurück zum Zitat Karimi, M., Ahmadi, V.: Microscopic analysis of gain spectrum of surface plasmons in graphene. Resul. Phys. 6, 754–760 (2016)CrossRef Karimi, M., Ahmadi, V.: Microscopic analysis of gain spectrum of surface plasmons in graphene. Resul. Phys. 6, 754–760 (2016)CrossRef
21.
Zurück zum Zitat Meshginqalam, B., Barvestani, J.: Aluminum and phosphorene based ultrasensitive SPR biosensor. Opt. Mater. 86, 119–125 (2018)CrossRef Meshginqalam, B., Barvestani, J.: Aluminum and phosphorene based ultrasensitive SPR biosensor. Opt. Mater. 86, 119–125 (2018)CrossRef
22.
Zurück zum Zitat Faramarzi, V., Ahmadi, V., Golmohamadi, F.G., Fotouhi, B.: A biosensor based on plasmonic wave excitation with diffractive grating structure. Sci. Iran. 24(6), 3441–3447 (2017) Faramarzi, V., Ahmadi, V., Golmohamadi, F.G., Fotouhi, B.: A biosensor based on plasmonic wave excitation with diffractive grating structure. Sci. Iran. 24(6), 3441–3447 (2017)
23.
Zurück zum Zitat Foley IV, J.J., Harutyunyan, H., Rosenmann, D., Divan, R., Wiederrecht, G.P., Gray, S.K.: When are surface plasmon polaritons excited in the Kretschmann–Raether configuration? Sci. Rep. 5, 9929 (2015)CrossRef Foley IV, J.J., Harutyunyan, H., Rosenmann, D., Divan, R., Wiederrecht, G.P., Gray, S.K.: When are surface plasmon polaritons excited in the Kretschmann–Raether configuration? Sci. Rep. 5, 9929 (2015)CrossRef
24.
Zurück zum Zitat Ahmadi, H., Heidarzadeh, H., Taghipour, A., Rostami, A., Baghban, H., Dolatyari, M., Rostami, G.: Evaluation of single virus detection through optical biosensor based on microsphere resonator. Opt. Int. J. Light Electron Opt. 125(14), 3599–3602 (2014)CrossRef Ahmadi, H., Heidarzadeh, H., Taghipour, A., Rostami, A., Baghban, H., Dolatyari, M., Rostami, G.: Evaluation of single virus detection through optical biosensor based on microsphere resonator. Opt. Int. J. Light Electron Opt. 125(14), 3599–3602 (2014)CrossRef
25.
Zurück zum Zitat Michel, D., Xiao, F., Alameh, K.: A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips. Sens. Actuators B Chem. 246, 258–261 (2017)CrossRef Michel, D., Xiao, F., Alameh, K.: A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips. Sens. Actuators B Chem. 246, 258–261 (2017)CrossRef
26.
Zurück zum Zitat El-Gohary, S.H., Eom, S., Lee, S.Y., Byun, K.M.: Dispersion curve-based sensitivity engineering for enhanced surface plasmon resonance detection. Opt. Commun. 370, 299–305 (2016)CrossRef El-Gohary, S.H., Eom, S., Lee, S.Y., Byun, K.M.: Dispersion curve-based sensitivity engineering for enhanced surface plasmon resonance detection. Opt. Commun. 370, 299–305 (2016)CrossRef
27.
Zurück zum Zitat Spackova, B., Wrobel, P., Bockova, M., Homola, J.: Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104(12), 2380–2408 (2016)CrossRef Spackova, B., Wrobel, P., Bockova, M., Homola, J.: Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104(12), 2380–2408 (2016)CrossRef
28.
Zurück zum Zitat Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017)CrossRef Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017)CrossRef
29.
Zurück zum Zitat Karimi, A., Zarifkar, A., Miri, M.: Design of ultra-compact tunable fractional-order temporal differentiators based on hybrid-plasmonic phase-shifted bragg gratings. Appl. Opt. 57(25), 7402–7409 (2018)CrossRef Karimi, A., Zarifkar, A., Miri, M.: Design of ultra-compact tunable fractional-order temporal differentiators based on hybrid-plasmonic phase-shifted bragg gratings. Appl. Opt. 57(25), 7402–7409 (2018)CrossRef
30.
Zurück zum Zitat Nguyen, H., Park, J., Kang, S., Kim, M.: Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5), 10481–10510 (2015)CrossRef Nguyen, H., Park, J., Kang, S., Kim, M.: Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5), 10481–10510 (2015)CrossRef
31.
Zurück zum Zitat Hlubina, P., Ciprian, D.: Spectral phase shift of surface plasmon resonance in the kretschmann configuration: theory and experiment. Plasmonics 12(4), 1071–1078 (2017)CrossRef Hlubina, P., Ciprian, D.: Spectral phase shift of surface plasmon resonance in the kretschmann configuration: theory and experiment. Plasmonics 12(4), 1071–1078 (2017)CrossRef
32.
Zurück zum Zitat Janjan, B., Fathi, D., Miri, M., Ghaffari-Miab, M.: Ultra-wideband high-speed mach–zehnder switch based on hybrid plasmonic waveguides. Appl. Opt. 56(6), 1717–1723 (2017)CrossRef Janjan, B., Fathi, D., Miri, M., Ghaffari-Miab, M.: Ultra-wideband high-speed mach–zehnder switch based on hybrid plasmonic waveguides. Appl. Opt. 56(6), 1717–1723 (2017)CrossRef
33.
Zurück zum Zitat Wong, C.L., Olivo, M.: Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4), 809–824 (2014)CrossRef Wong, C.L., Olivo, M.: Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4), 809–824 (2014)CrossRef
34.
Zurück zum Zitat Liedberg, B., Nylander, C., Lunström, I.: Surface plasmon resonance for gas detection and bio-sensing. Sens. Actuators 4, 299–304 (1983)CrossRef Liedberg, B., Nylander, C., Lunström, I.: Surface plasmon resonance for gas detection and bio-sensing. Sens. Actuators 4, 299–304 (1983)CrossRef
35.
Zurück zum Zitat Xiang, Y., Zhu, J., Wu, L., You, Q., Ruan, B., Dai, X.: Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene. IEEE Photon. J. 10(1), 1–7 (2018)CrossRef Xiang, Y., Zhu, J., Wu, L., You, Q., Ruan, B., Dai, X.: Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene. IEEE Photon. J. 10(1), 1–7 (2018)CrossRef
36.
Zurück zum Zitat Srivastava, T., Purkayastha, A., Jha, R.: Graphene based surface plasmon resonance gas sensor for terahertz. Opt. Quant. Electron. 48(6), 334 (2016)CrossRef Srivastava, T., Purkayastha, A., Jha, R.: Graphene based surface plasmon resonance gas sensor for terahertz. Opt. Quant. Electron. 48(6), 334 (2016)CrossRef
37.
Zurück zum Zitat Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160(1), 623–631 (2011)CrossRef Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160(1), 623–631 (2011)CrossRef
38.
Zurück zum Zitat Wu, L., Chu, H., Koh, W., Li, E.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)CrossRef Wu, L., Chu, H., Koh, W., Li, E.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)CrossRef
39.
Zurück zum Zitat Baqir, M., Farmani, A., Fatima, T., Raza, M., Shaukat, S., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018)CrossRef Baqir, M., Farmani, A., Fatima, T., Raza, M., Shaukat, S., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018)CrossRef
40.
Zurück zum Zitat Poushi, S.K., Eskandari, M., Nejand, B.A., Ahmadi, V.: Numerical calculation of plasmonic field absorption enhancement in CdSe-quantum dot sensitized ZnO nano-rods by Ag nanoparticle periodic arrays. Opt. Mater. 62, 90–94 (2016)CrossRef Poushi, S.K., Eskandari, M., Nejand, B.A., Ahmadi, V.: Numerical calculation of plasmonic field absorption enhancement in CdSe-quantum dot sensitized ZnO nano-rods by Ag nanoparticle periodic arrays. Opt. Mater. 62, 90–94 (2016)CrossRef
41.
Zurück zum Zitat Mishra, S.K., Bhardwaj, S., Gupta, B.D.: Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 15(2), 1235–1239 (2015)CrossRef Mishra, S.K., Bhardwaj, S., Gupta, B.D.: Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 15(2), 1235–1239 (2015)CrossRef
42.
Zurück zum Zitat Arora, P., Talker, E., Mazurski, N., Levy, U.: Dispersion engineering with plasmonic nanostructures for enhanced surface plasmon resonance sensing. Sci. Rep. 8(1), 9060 (2018)CrossRef Arora, P., Talker, E., Mazurski, N., Levy, U.: Dispersion engineering with plasmonic nanostructures for enhanced surface plasmon resonance sensing. Sci. Rep. 8(1), 9060 (2018)CrossRef
43.
Zurück zum Zitat Chorsi, H.T., Lee, Y., Alu, A., Zhang, J.X.: Tunable plasmonic substrates with ultra-high q-factor resonances. Sci. Rep. 7(1), 15985 (2017)CrossRef Chorsi, H.T., Lee, Y., Alu, A., Zhang, J.X.: Tunable plasmonic substrates with ultra-high q-factor resonances. Sci. Rep. 7(1), 15985 (2017)CrossRef
44.
Zurück zum Zitat Lu, X., Zhang, T., Wan, R., Xu, Y., Zhao, C., Guo, S.: Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface. Opt. Express 26(8), 10179–10187 (2018)CrossRef Lu, X., Zhang, T., Wan, R., Xu, Y., Zhao, C., Guo, S.: Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface. Opt. Express 26(8), 10179–10187 (2018)CrossRef
45.
Zurück zum Zitat Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)CrossRef Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)CrossRef
46.
Zurück zum Zitat Farmani, A., Miri, M., Sheikhi, M.H.: Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt. Commun. 391, 68–76 (2017)CrossRef Farmani, A., Miri, M., Sheikhi, M.H.: Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt. Commun. 391, 68–76 (2017)CrossRef
47.
Zurück zum Zitat Fotouhi, B., Ahmadi, V., Faramarzi, V.: Nano-plasmonic-based structures for DNA sequencing. Opt. Lett. 41(18), 4229–4232 (2016)CrossRef Fotouhi, B., Ahmadi, V., Faramarzi, V.: Nano-plasmonic-based structures for DNA sequencing. Opt. Lett. 41(18), 4229–4232 (2016)CrossRef
48.
Zurück zum Zitat Derakhshi, M., Fathi, D.: Terahertz plasmonic switch based on periodic array of graphene/silicon. Sci. Iran. 24(6), 3452–3457 (2017) Derakhshi, M., Fathi, D.: Terahertz plasmonic switch based on periodic array of graphene/silicon. Sci. Iran. 24(6), 3452–3457 (2017)
49.
Zurück zum Zitat Fard, S.K., Darbari, S., Ahmadi, V.: Electro-plasmonic gas sensing based on reduced graphene oxide/ag nanoparticle hetero-structure. IEEE Sens. J. 18(14), 5770–5777 (2018)CrossRef Fard, S.K., Darbari, S., Ahmadi, V.: Electro-plasmonic gas sensing based on reduced graphene oxide/ag nanoparticle hetero-structure. IEEE Sens. J. 18(14), 5770–5777 (2018)CrossRef
50.
Zurück zum Zitat Gosciniak, J., Bozhevolnyi, S.I.: Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides. Sci. Rep. 3, 1803 (2013)CrossRef Gosciniak, J., Bozhevolnyi, S.I.: Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides. Sci. Rep. 3, 1803 (2013)CrossRef
51.
Zurück zum Zitat Nejad, H.E., Mir, A., Farmani, A.: Super sensitive and tunable nano-biosensor for cancer detection. IEEE Sens. J. 19(13), 4874–4881 (2019)CrossRef Nejad, H.E., Mir, A., Farmani, A.: Super sensitive and tunable nano-biosensor for cancer detection. IEEE Sens. J. 19(13), 4874–4881 (2019)CrossRef
52.
Zurück zum Zitat Yuan, Y., Yu, X., Ouyang, Q., Shao, Y., Song, J., Qu, J., Yong, K.-T.: Highly anisotropic black phosphorous-graphene hybrid architecture for ultra sensitive plasmonic bio-sensing: theoretical insight. 2D Mater. 5(2), 025015 (2018)CrossRef Yuan, Y., Yu, X., Ouyang, Q., Shao, Y., Song, J., Qu, J., Yong, K.-T.: Highly anisotropic black phosphorous-graphene hybrid architecture for ultra sensitive plasmonic bio-sensing: theoretical insight. 2D Mater. 5(2), 025015 (2018)CrossRef
53.
Zurück zum Zitat Farmani, A., Mir, A., Bazgir, M., Zarrabi, F.B.: Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in THz range: numerical study. Phys. E 104, 233–240 (2018)CrossRef Farmani, A., Mir, A., Bazgir, M., Zarrabi, F.B.: Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in THz range: numerical study. Phys. E 104, 233–240 (2018)CrossRef
54.
Zurück zum Zitat Bahrami, F., Aitchison, J.S., Mojahedi, M.: Dual-wavelength spectroscopy of a metallic grating-coupled surface plasmon resonance biosensor. IEEE Photon. J. 7(2), 1–7 (2015)CrossRef Bahrami, F., Aitchison, J.S., Mojahedi, M.: Dual-wavelength spectroscopy of a metallic grating-coupled surface plasmon resonance biosensor. IEEE Photon. J. 7(2), 1–7 (2015)CrossRef
55.
Zurück zum Zitat Hlubina, P., Ciprian, D.: Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment. Plasmonics 12(4), 1071–1078 (2017)CrossRef Hlubina, P., Ciprian, D.: Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment. Plasmonics 12(4), 1071–1078 (2017)CrossRef
56.
Zurück zum Zitat Mirjalili, S.M., Abedi, K., Mirjalili, S.A.: Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide. Optik 124(23), 5989–5993 (2013)CrossRef Mirjalili, S.M., Abedi, K., Mirjalili, S.A.: Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide. Optik 124(23), 5989–5993 (2013)CrossRef
57.
Zurück zum Zitat Keshavarzi, R., Akhlaghi, M., Emami, F.: Binary PSO algorithm assisted to investigate the optical sensor based plasmonic nano-bi-domes. Optik 127(19), 7670–7675 (2016)CrossRef Keshavarzi, R., Akhlaghi, M., Emami, F.: Binary PSO algorithm assisted to investigate the optical sensor based plasmonic nano-bi-domes. Optik 127(19), 7670–7675 (2016)CrossRef
58.
Zurück zum Zitat Kennedy, J., & Eberhart, R.: Particle swarm optimization (PSO). In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995) Kennedy, J., & Eberhart, R.: Particle swarm optimization (PSO). In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)
59.
Zurück zum Zitat Sun, Y., Cai, H., Wang, X., Zhan, S.: Optimization methodology for structural multi parameter surface plasmon resonance sensors in different modulation modes based on particle swarm optimization. Opt. Commun. 431, 142–150 (2019)CrossRef Sun, Y., Cai, H., Wang, X., Zhan, S.: Optimization methodology for structural multi parameter surface plasmon resonance sensors in different modulation modes based on particle swarm optimization. Opt. Commun. 431, 142–150 (2019)CrossRef
60.
Zurück zum Zitat Yang, X.-S.: Optimization and metaheuristic algorithms in engineering. In: Yang, X.S., Gandomi, A.H., Talatahari, S., Alavi, A.H. (eds.) Metaheursitics in water, geotechnical and transport engineering, pp. 1–23. Elsevier, New York (2013) Yang, X.-S.: Optimization and metaheuristic algorithms in engineering. In: Yang, X.S., Gandomi, A.H., Talatahari, S., Alavi, A.H. (eds.) Metaheursitics in water, geotechnical and transport engineering, pp. 1–23. Elsevier, New York (2013)
61.
Zurück zum Zitat Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B6(12), 4370 (1972)CrossRef Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B6(12), 4370 (1972)CrossRef
62.
Zurück zum Zitat Palik, E.D.: Handbook of optical constants of solids, vol. 3. Academic Press, New York (1998) Palik, E.D.: Handbook of optical constants of solids, vol. 3. Academic Press, New York (1998)
63.
Zurück zum Zitat Wong, C.L., Olivo, M.: Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4), 809–824 (2014)CrossRef Wong, C.L., Olivo, M.: Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4), 809–824 (2014)CrossRef
64.
Zurück zum Zitat Chlebus, R., Chylek, J., Ciprian, D., Hlubina, P.: Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors 18(11), 3693 (2018)CrossRef Chlebus, R., Chylek, J., Ciprian, D., Hlubina, P.: Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors 18(11), 3693 (2018)CrossRef
65.
Zurück zum Zitat Manera, M.G., Montagna, G., Ferreiro-Vila, E., Gonzalez-Garcıa, L., SanchezValencia, J., Gonzalez-Elipe, A.R., Cebollada, A., Garcia-Martin, J.M., Garcıa-Martın, A., Armelles, G., Rella, R.: Enhanced gas sensing performance of Tio2 functionalized magneto-optical SPR sensors. J. Mater. Chem. 21(40), 16049–16056 (2011)CrossRef Manera, M.G., Montagna, G., Ferreiro-Vila, E., Gonzalez-Garcıa, L., SanchezValencia, J., Gonzalez-Elipe, A.R., Cebollada, A., Garcia-Martin, J.M., Garcıa-Martın, A., Armelles, G., Rella, R.: Enhanced gas sensing performance of Tio2 functionalized magneto-optical SPR sensors. J. Mater. Chem. 21(40), 16049–16056 (2011)CrossRef
66.
Zurück zum Zitat Arora, P., Talker, E., Mazurski, N., Levy, U.: Dispersion engineering with plasmonic nanostructures for enhanced surface plasmon resonance sensing. Sci. Rep. 8(1), 9060 (2018)CrossRef Arora, P., Talker, E., Mazurski, N., Levy, U.: Dispersion engineering with plasmonic nanostructures for enhanced surface plasmon resonance sensing. Sci. Rep. 8(1), 9060 (2018)CrossRef
67.
Zurück zum Zitat Lan, G., Gao, Y.: Surface plasmon resonance sensor with high sensitivity and wide dynamic range. IEEE Sens. J. 18(13), 5329–5333 (2018)CrossRef Lan, G., Gao, Y.: Surface plasmon resonance sensor with high sensitivity and wide dynamic range. IEEE Sens. J. 18(13), 5329–5333 (2018)CrossRef
Metadaten
Titel
Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor
verfasst von
Narjes Amoosoltani
Abbas Zarifkar
Ali Farmani
Publikationsdatum
20.08.2019
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01391-7

Weitere Artikel der Ausgabe 4/2019

Journal of Computational Electronics 4/2019 Zur Ausgabe

Neuer Inhalt