1.
Ascia, G., Catania, V., Panno, D.: An Integrated Fuzzy-GA Approach for Buffer Management. IEEE Trans. Fuzzy Syst. 14(4), pp. 528–541. (2006).
2.
Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary Algorithms + Domain Knowledge = Real-World Evolutionary Computation. IEEE Trans. Evol Comput. 10(3), pp. 256–280. (2006).
3.
Brocklebank J. C., Dickey, D.A.: SAS for Forecasting Series. SAS Institute Inc. Cary, NC, USA, pp. 6-140. (2003).
4.
Brockwell, P. D., Richard, A.D.: Introduction to Time Series and Forecasting. Springer-Verlag New York, pp 1-219. (2002).
5.
Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review, Information Sciences, Volume 205, pp. 1-19. (2012).
6.
Castro J.R., Castillo O., Melin P., Rodriguez A.: A Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Networks: The Case of Time Series Prediction. Springer-Verlag Berlin Heidelberg, Vol. 15a, pp. 363-386. (2008).
7.
Castro, J.R., Castillo, O., Martínez, L.G.: Interval type-2 fuzzy logic toolbox. Engineering Letters, 15(1), pp. 89–98. (2007).
8.
Chiou, Y.-C., Lan, L.W.: Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method. Fuzzy Sets Syst. 152(3), pp. 617–635. (2005).
9.
Deb, K.: A population-based algorithm-generator for real-parameter optimization. Springer, Heidelberg. (2005).
10.
Engelbrecht, A.P.: Fundamentals of computational swarm intelligence. John Wiley & Sons, Ltd., Chichester. (2005).
11.
Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Optimization of type-2 fuzzy weight for neural network using genetic algorithm and particle swarm optimization. Nature and Biologically Inspired Computing (NaBIC). World Congress on, vol., no., pp. 22-28. (2013).
12.
Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston. (1996).
13.
Hagras, H.: Comments on Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN). IEEE Transactions on Systems Man And Cybernetics Part B 36(5), pp. 1206–1209. (2006).
14.
Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs. (2002) ISBN 0-13-048434-2.
15.
Horikowa, S., Furuhashi, T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm. IEEE Transactions on Neural Networks 3, (1992).
16.
Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, pp. 260–270. (1995).
17.
Jang J.S.R.: Fuzzy modeling using generalized neural networks and Kalman fliter algorithm. Proc. of the Ninth National Conference on Artificial Intelligence. (AAAI-91), pp. 762-767. (1991).
18.
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing. Prentice-Hall, New York. (1997).
19.
Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. on Systems, Man and Cybernetics. Vol. 23, pp. 665-685 (1992).
20.
Karnik, N.N., Mendel, J.M., Qilian L.: Type-2 fuzzy logic systems. Fuzzy Systems, IEEE Transactions on. vol.7, no.6, pp. 643,658. (1999).
21.
Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inform. Sci. 120, pp. 89–111. (1999).
22.
Kennedy, J., Eberhart, R.: Particle swarm optimization. Neural Networks. Proceedings., IEEE International Conference on. vol. 4. pp. 1942-1948. (1995).
23.
Lee, C.H., Hong, J.L., Lin, Y.C., Lai, W.Y.: Type-2 Fuzzy Neural Network Systems and Learning. International Journal of Computational Cognition 1(4), pp. 79–90. (2003).
24.
Lee, C.-H., Lin, Y.-C.: Type-2 Fuzzy Neuro System Via Input-to-State-Stability Approach. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 317–327. Springer, Heidelberg (2007).
25.
Lin, Y.-C., Lee, C.-H.: System Identification and Adaptive Filter Using a Novel Fuzzy Neuro System. International Journal of Computational Cognition 5(1) (2007).
26.
Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science, Vol. 197, pp. 287-289. (1997).
28.
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, pp. 1–13. (1975).
29.
Melin, P., Soto, J., Castillo, O., Soria, J.: A New Approach for Time Series Prediction Using Ensembles of ANFIS Models. Experts Systems with Applications. Elsevier, Vol. 39, Issue 3, pp 3494-3506. (2012).
30.
Mendel, J.M.: Uncertain rule-based fuzzy logic systems: Introduction and new directions. Ed. USA: Prentice Hall, pp 25-200. (2000).
31.
Mendel, J.M.: Why we need type-2 fuzzy logic systems. Article is provided courtesy of Prentice Hall, By Jerry Mendel. (2001).
32.
Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization Intelligence: Advances and Applications. Information Science Reference. USA. pp. 18-40. (2010).
33.
Pedrycz, W.: Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Dordrecht. (1997).
34.
Pedrycz, W.: Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht. (1996).
35.
Pulido M., Melin P., Castillo O.: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Information Sciences, Volume 280,, pp. 188-204. (2014).
36.
Pulido, M., Mancilla, A., Melin, P.: An Ensemble Neural Network Architecture with Fuzzy Response Integration for Complex Time Series Prediction. Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, pp. 85-110. (2009).
37.
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, NJ. (2003).
38.
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE congress on evolutionary computation, pp. 69-73. (1998).
39.
Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation, pp. 1945-1950. (1999).
40.
Sollich, P., Krogh, A.: Learning with ensembles: how over-fitting can be useful. in: D.S. Touretzky M.C. Mozer, M.E. Hasselmo (Eds.). Advances in Neural Information Processing Systems 8, Denver, CO, MIT Press, Cambridge, MA, pp. 190-196. (1996).
41.
Soto, J., Melin, P., Castillo, O.: Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators. International Journal Hybrid Intelligent Systems Vol. 11(3): pp. 211-226. (2014).
42.
Takagi T., Sugeno M.: Derivation of fuzzy control rules from human operation control actions.Proc. of the IFAC Symp. on Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 55-60. (1983).
43.
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15, pp. 116–132. (1985).
44.
Wang, C.H., Cheng, C.S., Lee, T.-T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. on Systems, Man, and Cybernetics Part B: Cybernetics 34(3), pp. 1462–1477. (2004).
45.
Wang, C.H., Liu, H.L., Lin, C.T.: Dynamic optimal Learning rate of A Certain Class of Fuzzy Neural Networks and Its Applications with Genetic Algorithm. IEEE Trans. Syst. Man, Cybern. 31(3), pp. 467–475. (2001).
46.
Wu, D., Mendel, J.M.: A Vector Similarity Measure for Interval Type-2 Fuzzy Sets and Type-1 Fuzzy Sets. Information Sciences 178, pp. 381–402. (2008).
47.
Wu, D., Wan Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Engineering Applications of Artificial Intelligence 19(8), pp. 829–841. (2006).
48.
Xiaoyu L., Bing W., Simon Y.: Time Series Prediction Based on Fuzzy Principles. Department of Electrical & Computer Engineering FAMU-FSU College of Engineering, Florida State University Tallahassee, FL 32310, (2002).
49.
Zadeh L. A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems, 4(2), 103, (1996).
50.
Zadeh L. A.: Fuzzy Logic. Computer, Vol. 1, No. 4, pp. 83-93. (1988).
51.
Zadeh, L.A.: Fuzzy Logic, Neural Networks and Soft Computing. Communications of the ACM 37(3), pp. 77–84. (1994).