Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2023 | OriginalPaper | Buchkapitel

2. Particle Swarm Optimization

verfasst von : Wei Huang, Jian Xu

Erschienen in: Optimized Engineering Vibration Isolation, Absorption and Control

Verlag: Springer Nature Singapore

Abstract

In this chapter, a new artificial intelligence optimization tool, a detailed introduction for particle swarm optimization (PSO) is presented here. The basic structure and the main characteristics of PSO algorithm and the multi-objective PSO (MOPSO) algorithm is described and elaborated, and some standard numerical examples for PSO and MOPSO are tested.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yoshida H, Kawata K, Fukuyama Y et al (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4):1232–1239 CrossRef Yoshida H, Kawata K, Fukuyama Y et al (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4):1232–1239 CrossRef
2.
Zurück zum Zitat Gaing ZL (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195 CrossRef Gaing ZL (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195 CrossRef
3.
Zurück zum Zitat Salman A, Ahmad I, Al-Madani S (2002) Particle swarm optimization for task assignment problem. Microprocess Microsyst 26(8):363–371 CrossRef Salman A, Ahmad I, Al-Madani S (2002) Particle swarm optimization for task assignment problem. Microprocess Microsyst 26(8):363–371 CrossRef
4.
Zurück zum Zitat Nouiri M, Bekrar A, Jemai A et al (2018) An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. J Intell Manuf 29(3):603–615 CrossRef Nouiri M, Bekrar A, Jemai A et al (2018) An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. J Intell Manuf 29(3):603–615 CrossRef
5.
Zurück zum Zitat Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol 1. IEEE, pp 84–88 Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol 1. IEEE, pp 84–88
6.
Zurück zum Zitat Huang T, Mohan AS (2005) A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas Wirel Propag Lett 4:112–117 CrossRef Huang T, Mohan AS (2005) A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas Wirel Propag Lett 4:112–117 CrossRef
7.
Zurück zum Zitat Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 52(2):397–407 MathSciNetCrossRefMATH Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 52(2):397–407 MathSciNetCrossRefMATH
8.
Zurück zum Zitat Conn AR, Elfadel IM, Molzen Jr WW et al (1999) Gradient-based optimization of custom circuits using a static-timing formulation. In: Proceedings of the 36th annual ACM/IEEE design automation conference. ACM, pp 452–459 Conn AR, Elfadel IM, Molzen Jr WW et al (1999) Gradient-based optimization of custom circuits using a static-timing formulation. In: Proceedings of the 36th annual ACM/IEEE design automation conference. ACM, pp 452–459
9.
Zurück zum Zitat Shayeghi A, Shayeghi H, Kalasar HE (2009) Application of PSO technique for seismic control of tall building. World Acad Sci Eng Technol 3(4):1116–1123 Shayeghi A, Shayeghi H, Kalasar HE (2009) Application of PSO technique for seismic control of tall building. World Acad Sci Eng Technol 3(4):1116–1123
10.
Zurück zum Zitat Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43 Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43
11.
Zurück zum Zitat Marinaki M, Marinakis Y, Stavroulakis GE (2010) Fuzzy control optimized by PSO for vibration suppression of beams. Control Eng Pract 18(6):618–629 CrossRef Marinaki M, Marinakis Y, Stavroulakis GE (2010) Fuzzy control optimized by PSO for vibration suppression of beams. Control Eng Pract 18(6):618–629 CrossRef
12.
Zurück zum Zitat Amini F, Hazaveh NK, Rad AA (2013) Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput-Aided Civil Infrastruct Eng 28(7):542–557 CrossRef Amini F, Hazaveh NK, Rad AA (2013) Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput-Aided Civil Infrastruct Eng 28(7):542–557 CrossRef
13.
Zurück zum Zitat Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation, 2002 (CEC’02), vol 2. IEEE, pp 1051–1056 Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation, 2002 (CEC’02), vol 2. IEEE, pp 1051–1056
14.
Zurück zum Zitat Marinaki M, Marinakis Y, Stavroulakis GE (2011) Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures. Struct Multidiscip Optim 43(1):29–42 MathSciNetCrossRefMATH Marinaki M, Marinakis Y, Stavroulakis GE (2011) Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures. Struct Multidiscip Optim 43(1):29–42 MathSciNetCrossRefMATH
15.
Zurück zum Zitat Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197 CrossRef Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197 CrossRef
16.
Zurück zum Zitat Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms. Lawrence Erlbaum, Hillsdale, NJ, pp 41–49 Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms. Lawrence Erlbaum, Hillsdale, NJ, pp 41–49
17.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM symposium on applied computing. ACM, pp 603–607 Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM symposium on applied computing. ACM, pp 603–607
18.
Zurück zum Zitat Fieldsend JE, Singh S (2002) A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. In: U.K. workshop on computational intelligence, pp 37–44 Fieldsend JE, Singh S (2002) A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. In: U.K. workshop on computational intelligence, pp 37–44
19.
Zurück zum Zitat Li X (2003) A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Genetic and evolutionary computation—GECCO 2003. Springer, Berlin, Heidelberg, pp 37–48 Li X (2003) A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Genetic and evolutionary computation—GECCO 2003. Springer, Berlin, Heidelberg, pp 37–48
20.
Zurück zum Zitat Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302 CrossRef Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302 CrossRef
21.
Zurück zum Zitat Farshidianfar A, Saghafi A, Kalami SM et al (2012) Active vibration isolation of machinery and sensitive equipment using H ∞ control criterion and particle swarm optimization method. Meccanica 47(2):437–453 CrossRefMATH Farshidianfar A, Saghafi A, Kalami SM et al (2012) Active vibration isolation of machinery and sensitive equipment using H control criterion and particle swarm optimization method. Meccanica 47(2):437–453 CrossRefMATH
Metadaten
Titel
Particle Swarm Optimization
verfasst von
Wei Huang
Jian Xu
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2213-0_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.